Proceedings of Ninth World Conference on Earthquake Engineering
August 2-9, 1988, Tokyo-Kyoto, JAPAN (Vol.Ill)

5-2-8

AN APPROXIMATE SOLUTION OF EARTHQUAKE-INDUCED SLIPPAGE
OF STRUCTURES ON/IN SOIL

Takashi AKIYOSHI! and Kunihiko FUCHIDAZ

1Department of Civil and Environmental Engineering,
Kumamoto University, Kurokami, Kumamoto, Japan

2Department of Civil and Architectural Engineering,
Yatushiro College of Technology, Yatushiro, Japan

SUMMARY

The paper presents an approximate but practical solution of seismic response
of structures resting on/or embedded in an elastic soil deposite. The soil-
structure systems are linear except for the frictional interface. Since the
method is based on the linearization of the frictional stress-strain relation and
Fourier transform, a closed form solution including soil-structure interaction
is obtained and therefore the data processing is very fast. Computation is made
for the maximum and root mean square responses of soil and structures to recorded
earthquakes, and the results are compared with the sinusoidal input.

INTRODUCTION

Investigations after earthquakes reveal that slippage of structures was
associated with heavy damages. A typical example is the pipeline damage that the
slippage of pipelines releasing the strains of pipe bodies makes serious strain
accumulation at the joints which results in break down. So much effort to
present mathematical models consistent with the earthquake damages have been done
using sinusoidal inputs(Refs.1-4). However, for further extensive understandings
of the structural damages by slippages during earthquakes, more appropriate
mathematical models are required.

This research aims to analyze the effect of soil-structure slippage including
soil-structure interaction on the structural response, based on the fast Fourier
transform. A simple closed form solution for the slippage of structures resting
on or shallowly embedded in an elastic soil is obtained by linearizing Coulomb
friction force versus slip displacement at the interface. Computation are mainly
executed for the embedded pipelines and the results are compared with the case of
sinusoidal input.

MATHEMATICAL FORMULATION

Formulation of Sinusoidal Input A couple of frictional models subjected to
sinusoidal input are treated here as Fig. 1 in which (a) and (b) are,
respectively, the cases of a rigid structure resting on and a flexural structure
embedded in an elastic soil.  Coulomb friction is adopted as the mechanism of the
soil-structure interface which is shown in Figs. 2 and 3. In the figures

Tp, Ty, S,S and §; are, respectively, the frictional force, its amplitude,
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the displacement, the velocity and the displacement amplitude of slip. By
linearizing, Coulomb friction becomes
. 4TS

Tp = Tosign(S) ~ oS, (1)
in which Tp,Tog = Frictional stress and its amplitude, = Circular
frequency.

For the Model 1, the equation of motion is written by

MX-5)=Tp (2)
in which X = soil displacement at the interface, Y= structural displacement,

S=X-Y = slip displacement, M = mass of the structure.
Now consider the input P wave =z, and the reflected P wave =z, as
$0=XO Q_iqz
. 3

) = Xl ¥?

where g¢=wsin@/¢c, c= velocity of P wave, 6 = incident angle, z= vertical

coordinate and  expliw{ - zcasf/c)] 1is eliminated. It is also noted that the
reflected SV wave is neglected here for the sake of simplicity.

The boundary condition is that the shear force at the interface equates the
frictional force Tp (=Eq.(1));

TF=[A1(;3(2:0+$1)/ aZ]Z=0 (4)
where ¢ = shear modulus of soil and 4;= area of the interface. Let S be
S5yt 9P (5)
then
0 3 Xo <Xer
Sh =
o T T ®
Xg—m cos< @ - Y 3 Xo >Xeop
where  X,.= critical slip displacement, ¢ p= phase lag of slippage, in which
Xer = 74y cosd [Gq v sz] (N
For the Model 2, inertia force of the pipe is neglected because the movement
of the burried pipes is restricted by the surrounded soil. Further for the
sake of simplicity Model 2 is treated in a vertical two dimensional space, and
therefore the pipe becomes a uniform thin plate of infinite length. So
neglecting the mass of the pipe, equation of motion of the pipe is written by
a2y
EA +Tp=0 (8)

where E, A4 ,Tg,lp= elastic modulus, real cross sectional area, frictional force
per unit length, and circumference length of the pipe. Similar treatment as
Model 1 can be made for Model 2 which yields

0 3 Xo <Xer

4T, (9
- 2 .
Clg "’ X2 ~Ys?| 5 Xg >Xep

SO=
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where
Yg = 2Toc%/ n EAyw2cos? 6

2T, (10)
- /l 240y
Xer=\| | welpe) " *¥S

Finally, the axial displacement Y of the pipe takes the form
{}’B*exp(igbB) : X9 <Xep

Yg - explidg) 2 Xo >Xer

(11)
where Ypg=MyXg , Ry=E4y/ cGly, lp= circumference length of the pipe,
My (:Amplification factor) =2/1(1+ (Rywcos? 8§ / sin§)211/2

¢p5, 95= Phase angles for adhesive and slipped cases.

Formulation of Random Input Now let the Fourier transform of a random input
Xtm) =Xy be Xp 3 (kkm=0,1,+ -+ +,N-1)

— N-1 .
Xk ;;/Z Xm.e-'LZTIICm/N (12)

m=0

where the spectral displacements }_('k of the input , instead of Xy , refer to
Egs. (6) or (9).

So the spectral displacements Yy of the structure can be obtained by
replacing X, with |7-‘:Ic| in Eq. (11) in which slip or stick states is
decided accoring to the concept of Fig. 4. Therefore the time history of the
structural response to the random input under a frictional environment is obtained
by inverse Fourier transform of Eq. (11).

Modification of Critical Slip Displacement Since the spectral displacement
Xy of Eq. (12) is far less than the original input X, , then critical slip
displacement X,r becomes too excessive values comparing to Xm . So here is
proposed a correction factor 7 which is completely empirical one. Using 7,

X.r becomes modified X', as

X'op=7°Xer

In this research r is defined by the ratio of the maximum spectral
displacement to the maximum displacement of the time history of the input.

NUMERICAL ILLUSTRATIONS

For saving the space, numerical illustrations are limited only for the case
of the Model 2. The inputs are P waves(:recorded strong motions) of the maximum
acceleration 0.3 m/s?2 ,the velocity c=300 m/s, and of the incident angle ¢ =45°
to the structural axis.

First the effect of duration time of earthquakes(=El Centro 1940 NS, max.
amp.= 0.3m/s2 ) on the response of the pipe is discussed in Fig. 5 in which the
upper(a) and lower(b) diagrams are, respectively, the cases before the correction
and after the correction of X, . In both figures ratios of rms strain of
the pipe to that of the soil are plotted versus critical slip acceleration A4¢r
in which Aoy =To+c%/ EA , and the soil-pipe interaction is not taken into
consideration. Before the correction of X, , the break-loose point of
Acr is far less than the sinusoidal cases, and also depends on the duration
time T. However, after the correction of X, , the responses are very close to
the sinusoidal cases, and are no longer dependent of T. Thus in this research
the correction factor r defined above seems to be useful and sufficient for
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practical use.

Fig. 6 is an example to show how low critical slip acceleration Acr
releases the pipe strain in time and frequency domain.

On the other hand, Figs. 7 and 8, which consider the soil-pipe interaction,
are, respectively, for El Centro earthquakes(1940), NS and Kaihoku Bridge
earthquake, EW in which the ratios of rms strain of the pipe to the soil are
plotted versus Agr by circle signs, and the results for sinusoidal wave are
drawn as reference lines by solid lines. Dominant frequencies are 1.2 Hz for El
Centro earthquake NS and 2.5 Hz for Kaihoku Bridge earthquake. For this soil-
pipe interacted case, the response amplitude is possible to take twice the input
amplitude, and not only the critical slip displacement X¢r Dbut the break-loose
point depend on frequency, so that the case without the interaction such as in
Fig. 7 corresponds to zero stiffness ratio. Thus the case of Rg = EAy/cGly
(=Pipe stiffness/soil stiffness) = 0.03 in both figures shows relatively hard
soil which means less interaction.

For large 4¢r in both figures which designate the flat part(=bonded state)
by proposed method is close to the sinusoidal case around the dominant
frequency. However, for small A¢r , the break-loose point by proposed method is
slightly less than the sinusoidal case, so that practically the correction factor

7 should be chosen just smaller.

CONCLUSION

This study shows that the proposed method is useful and practical for slip
estimation of structures resting on/or embedded in soil during earthquakes,
because the method is basically based on the linearization of Coulomb friction
and fast Fourier transform together with the interaction. It is noted that the
key parameter in this study is the correction factor of critical slip
displacement, so that the refined values available for various structures are
required in future.
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Fig.4 Concept of Slip/Stick
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Fig.5 Ratios of RMS Strain of Pipe to Soil
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