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SUMMARY

A numerical method for obtaining uplifting foundation response due to earth-
quake inputs is presented. The method assumes that the foundation rests on an
elastic halfspace and is based on the time dependent Green's function. The
dynamic subgrade stiffness for an uplifting massless rigid foundation subjected
to sinusoidal excitation 1is linearly approximated as the equivalent complex
stiffness(ECS). Applying the ECS to a lumped parameter model, a practical
calculation procedure to determine the frequency transfer function for uplifting
rigid bodies is proposed.

INTRODUCTION

Recently, many studies have been carried out on the nonlinear vibration of
structures induced by uplifting. The majority of these analyses are based on
lumped parameter models. When estimating model constants, it is advisable to
calculate the dynamic subgrade stiffness(DSS) for an uplifting foundation in
order to respect the semi-infinite nature of the supporting soil. However, due
primarily to the difficulty of calculation, the DSS is often not determined.
Wolf et. al.(Ref.l) proposed a nonlinear soil-structure interaction analysis pro-
cedure, which is based on the boundary element method with the impulsive Green's
function. The function is first calculated in the frequency domain and then
approximately transformed into the time domain by the FFT method. However, their
procedure required a large computational effort and there was no specific mention
of DSS. Kawakami et. al.(Ref.2) calculated the DSS by a hybrid frequency-time.
domain procedure. Unfortunately, the solutions are often non convergent.

We propose a simplified numerical procedure based on the impulsive Green's
function for an elastic halfspace, which is directly calculated in the time
domain but not as in Ref.l. By analyzing an uplifting massless rigid foundation
subjected to sinusoidal excitation, the DSS is determined using the equivalent
linearization method and is defined as the equivalent complex stiffness(ECS).
Using the above ECS, a practical calculation for the frequency transfer function
of a rigid body subjected to sinusoidal earthquake-like inputs is demonstrated.

TIME DEPENDENT DISPLACEMENT FUNCTIONS FOR A CONCENTRATED UNIT-STEP LOAD

It 1is assumed that the supporting soil is a homogeneous elastic halfspace
which can be described by a cylindical coordinate system (r,6,z) as shown in
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Fig.l. Whwn a vertical point load, PH(t), is applied at the origin, the vertical
displacement of an arbitrary point on the soil surface is written as follows,
where H(t) is a unit step function(Refs.3 and 5).
1-y P
w(r’t)—Z:zG_r W(z) (1)
The horizontal displacement in the x-direction at a given point (r, 6 ,z) caused
by a point load, QH(t), in the x-direction at the origin is also written

u(r, 6,t)= - [U(T)cos28+(1-v)V(7)sin?8] (2)
2zG T

where v =the Poisson's ratio and G=the shear modulus(Refs.4 and 5). T 1is the
dimensionless time V. t/r, where Vg is the shear wave velocity of the medium.

W(z), U(z) and ‘s/(t) denote the time dependent terms of the displacement
functions as shown in Fig.2, where v=0.45. These are equal to 1 for T2 7p=Vy/Vg,
where Vp is the Rayleigh wave velocity of the medium.

NODAL DISPLACEMENT OF SOIL SURFACE

The soil surface displacement for vertical point loading P(t) applied at the
origin is obtained using the temporal Duhamel's integration as follows.

1-y biioey 3 o oy beoey Ay Yet’
w(r,t)—z—;—ér{P(t)W(OHJg(t—t )dt.dt }= ZﬂGr{P(t)W(0)+jz(t—t YAN( . )} (3)

The foundation area, the soil surface below the foundation, is discretized
by numerous mesh elements, and a node is located at the center of each element.
It 1is assumed that the surface traction within an element is uniformly distri-
buted and is constant over a short time interval, At. The nodal force is defined
by the resultant surface traction within the corresponding element. On the n-th
time steg(nAt<ts(n+l)At), the increment of the vertical displacement of the i-th
node, AW3, can be represented to incorporate all nodal forces acting on the
foundation area.

N m
s W
= + -

Awin ws,iiApin ji {1 aij)wsijmfo Apj(n—m)Hijrn (4)
Where N=the total number of nodes, p-n=the vertical component of the j-th nodal
force at the n-th step, AP =the ihcrement of Pjp m'= the minimum integer
satisfying Hij=0, aij=Kronecﬁer's delta symbol, anH Hij is defined below

¥, - -
whereﬂijn' ¥iin = ¥ij(m-1) )

;] 1=y 1 j‘(nﬂ)AtJ %< a"le Vot

e T T TS —¥(——)dx’.dy’dt
iin 226 At(AL)? DAt -4 Jogr ( r ) X, qy sij (6)

where r=the distance between the i-th and j-th nodes, and Wgij is the i-th nodal

displacement for a unit static load within the j-th element anhd is a given.
4L

R GRS J‘i j“f Loyar
sisy — 26 AD? J_g Joa ¢ 5% (7)

2
Eq.(4) can be rewritten in matrix form as follows
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5, _ 1 - p
(Av) =la ] {Aph + nil[avlm{Ap}n_m =l ] 1Aph +HAv) (8)

where elements of [a,], are provided by Egs.(5)-(7). {Aw'-:’}n is the increment of
the nodal displacement vector produced by wave propagation due to the past
loading in the foundation area and is a known value.

In the case of horizontal loading, the n-th step increment of the nodal
displacement vector {Aus}n in the y-direction is also derived as below,

S n’ P
{Au }n-[aH]o{Aq}n+ mfil[dH]m{Aq}n_m -[aH]o{Aq}n +{Au }n (9)
where {aq},=the increment of the nodal force vector in the y-direction.

RELATIONSHIP BETWEEN REACTIVE FORCE AND FOUNDATION DISPLACEMENT

The bottom surface of the foundation is discretized by mesh elements in the
same manner as with the soil surface below the foundation. When a vertical
static 1load P and an exciting moment M(t) about the x-axis are applied at the
center of a massless rigid foundation, the independent kinematic quantities of
the foundation are expressed by the vertical displacement and the angular
rotation about the x-axis at the center. Here, these quantities are defined by
wh and 94 respectively for the n-th time step. The displacement of an arbitrary
point of the foundation can be given as a function of these independent
quantities.

Since there is no tension between the foundation and the soil surface, par-
tial uplift can occur. The foundation area is devided into a contact-region and
an uplift-region, when the foundation is uplifting. The nodal displacement of
the so0il surface within the contact-region is equal to that of the foundation.
While in the uplift-region, they are not equal and no surface traction occurs.
Therefore, the resultant reactive forces for the foundation are expressed by the
nodal force vector. o

Py =T o= Tior . My =t Tt =tv) Ti) (10)
Where the notation ~ indicates matrices and vectors for contact nodes, and
vector {y} consists of the nodal coordinate values in the y-direction.

The nodal displacement vector of the soil surface is derived from Eq.(8) and
is written as follows.

WS, = [ayly b, + W7 (11)
The above equation is represented in consideration of the boundary conditions as
below.

WSl = ) =k + el = [ayd, )P, (12)
Conversely, the nodal force vector is written as follows.
ol = La JgH (S - P) ) (13)

Substituting Eqs.(12) and (13) into Eq.(10) leads to

7 . f P
[Pn]= { Kv Ko }[ w?]_ [Pn} (14)
Mn Koy Kgo en M?l
e

Ky = (0TEGI M g =Ko =TI ) . Ko o=l Tk, i}
- i Ter - craTrre . v T 11
PP = (1Tl I P, MR =TIk D, 0PH, . [k, = [aJ5 (15)
The unknowns, wrfl, ef and {ws}n can be obtained from Egs.(14), (12) and (11)
by the iterative calculation for these terms.
Corresponding nodes for the foundation and soil have the same motion

providing that they have not been separated due to uplifting. But, each has a
different motion during separation, and the horizontal dislocation between the
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two nodes generally remains after uplifting. Therefore, the horizontal
displacement of the foundation for a horizontal excitation must be calculated in
consideration of this dislocation.

EQUIVALENT COMPLEX STIFFNESS

When a massless rigid foundation is subjected to a vertical static load P,
an exciting moment, Msinwt, about the x-axis and an exciting force, Qsinwt, in
the y-direction, the foundation displacement can be computed by the procedure
mentioned in the former section. The time histories of the angular rotation
about the x-axis and the displacement in the y-direction of the foundation become
a steady state shortly after the initial excitation. Considering one cycle of
this steady state, each of these time histories is expanded to a Fourier series.
The series has higher-order frequency components which_are odd numbered harmonics
of the excitation frequency. The angular rotation, @ (t), can be expressed in
complex form, as below.

of = gei(@t=81) | g 1Bwt-83) 4 g ilwt-¢s) 4... (16)

As ©1>>65>6> the angular rotation can be
approximated by the term ©,. Using the same
complex expression for the exciting moment, the
DSS associated with the rocking mode can be
approximated as the ECS, which is represented
by the ratio of the exciting moment to the
approximate angular rotation, as follows.

. Y z

Kg+iky =é%‘el¢1 (17) Fig.4 Massless rigid
The equation for the ECS associated with the foundation
swaying mode is similar to that shown in Eq.(17).
Numerical Model Soil: VS=1OOm/sec. G=1500tf/m2, v=0.45, mass density; pg=0.15
tfsZ/m%. "Massless Rigid Foundation: LxL=10mx10m square and the area Iis
discretized by 10x10 mesh elements. Further, the time interval At=1/100sec and
the vertical static load P=1000tf.
Results and Discussion From the preliminary calculation of wuplifting found-
ation response due to the static moment about the x-axis, it was found that the
critical moment M, can be approximated by PL/5. Further, it was found that the
reduction in the secant modulus of the static subgrade stiffness associated with
the rocking mode which accompanies uplift can be approximated by the equation

29 5
t(n) = » (-3 (18)
where 7=the contact ratio. Fig.5 shows the relationship between the excitation
frequency « and the contact ratio 7, when the range for M/M. is 1-2. From this
figure, it is evident that the influence of won 7 can be omitted. Figs.6 and 7
show the ECS. From these figures, the following conclusions can be drawn when
the uplifted area is relatively small(contact ratio #>0.5).

(1)The ECS associated with the rocking mode, Ka(w,n), can be expressed by
separating the variables  and 7.

Kg (@, 1)=1(2)[Kg o w)+iKy o(@)] (19)

where Kge(w) and Kge(w) respectively indicate the real and imaginary parts of
the complex stiffness for the linear case, i.e. no uplift.
Consequently, the effect of 7 on the equivalent damping ratio associated with
the rocking mode is extremely small.

(2)Neither the real nor imaginary part of the ECS associated with the swaying
mode is significantly influenced by z; that is

Kylo, n)=kge(w)+iky, (@) (20)

where Kpe(®w) and Kfjg(w) respectively indicate the real and imaginary parts
of the complex stiffness for the linear case.
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FREQUENCY TRANSFER FUNCTIONS FOR UPLIFTING RIGID BODIES

The equation of motion of a rigid body subjected to
the y-directional horizontal earthquake inputs, shown in

Fig.8, is written as follows; _ L
[m] {u} + (R} = {f} (21)
where i {w = (Uf' of 'Wf)T
u m§ 23 T mJe "
ml =lnl 5 + m(g)é . ®) = By Ry Ry
2.0 L H T By .
m {f} =m(—ug,-§ug,g) S - ol fH
and where g=the acceleration of gravity. RVI:\QRG
It is assumed that uy=U,el®® and the vertical accele- w
ration, Wf induced by uplifting can be omitted. Taking Fig.8 Rigid body

account of the steady state response, it is also assumed
that uf=ufelowt ang of= efel®wt, Further, using the approximations shown in Egs.
(19) and (20) for the ECS, Eq.(21) is represented as below

o lM+KD 0 el @t oy (Fret@t (22)
where [M]=the sub-matrix of [m] denoted by the dotted line, {U}=(Uf, Gf)T and
{F}=(m, m/H)T.

Furthermore, considering the resonance frequency of the system, wr» in the
linear case, the complex stiffness is represented by a simple device consisting
of a static spring with added mass and dashpot; but the added mass in the swaying
mode can be omitted. Then, [K] is expressed as follows.

[K]=diag. (Ko (0)+iKpe(@ ), £(7)(Kg o(0)-021,+iky (0 ))) (23)

Fixing the values of w and 7, U, and Uf can be calculated by Eq.(22), and ef is

calculated fromdp as below,
7=[6,/©15 (vhen ©>6 ), 7=1 (vhen 686 ) (24)

where ¢, is the critical rocking angle for the static load mgL/5K g (0) .

Generally, 7n is calculated from lugl when w is fixed, but 1s difficult to
obtain directly because 7 is a multiple-valued function of Iug| While, lﬁgl is
a single-valued function of » and can be easily calculated. Therefore, in this
study, the relationship of 7 vs.lﬁgl is determined for some specific values of 7,
as shown in Fig.9. In the uni-valued portion of the graph(i.e. ), the relation-
ship is the same regardless whether the excitation frequency increases, decreases
or is step sinusoidal. For the multi-valued section of the graph, the solid line
represents the increasing frequency and step sinusoidal case, the dot-dash line
the instability zone and the broken line the case for decreasing frequency. By
using the soild line portion of the relationship 7 vs. Iu |, a value of 7 can be
obtained from a given value of Iugl by the bi-section method since the input
motion is considered here to be step sinusoidal.

Results and Discussion The numerical example 1is the same as one in the former
section. Further, the rigid body is a solid, where the mass density, fy=4;/4 and
the height, H=1.5L.

The magnification factor of the horizontal acceleration at the top of the
rigid body [u /U,| is shown in Fig.10, and the corresponding contact ratio is
shown in Fig. 11 In these figures, the solid lines show the approximate results
and the symbols show the detailed results from Eq.(21). These are in good
agreement with each other within the uplifting range of 7>0.5.

g

CONCLUSION

The equivalent radiation damping ratios associated with both rocking and
swaying modes do not significantly change even if the uplift area is nearly
equal to the contact area. Further, the lumped parameter model based on the ECS
is effective for the practical calculation of the frequency transfer function,
and we feel the detailed method presented here is valid for the time domain
analysis of uplifting foundation response.
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