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SUMMARY

This paper deals with the hybrid frequency-time-domain procedure. In this
procedure, a nonlinear system is modeled by a linear one analyzed in the frequency
domain. The nonlinear effects are represented by exciting pseudo forces evaluated
in the time domain. A successful implementation of the procedure requires the
satisfaction of a criterion of stability and the division of the time span of
interest in time segments to which the procedure is applied sequentially. Its
application is illustrated by the analysis of an uplifting rigid block where the
soil's stiffness coefficients are directly defined in the frequency domain.

INTRODUCTION

The basic principle of the hybrid frequency-time-domain procedure (HFTD
procedure, Ref. 1) is illustrated in the scheme below:
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In this procedure, a nonlinear system is modeled by a 1inear one in which the
nonlinear effects are represented by exciting pseudo forces (—AF?gg;;ES?r). The
latter compensate for the difference in internal forces as obtained from the
pseudo~-Tinear system and from the nonlinear one. In the HFTD procedure, the pseudo
forces are evaluated in the time domain and then transformed into the frequency
domain where the equations of motion are solved. The resulting response quantities
are transformed back to the time domain and the pseudo forces are updated. The
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procedure is repeated iteratively until convergence is reached. Transformations
from and to the frequency domain are usually performed using the Fast Fourier
Transform algorithm.

In this paper, the implementation of the HFTD procedure by the segmenting
approach and the criterion of stability of the HFTD procedure are presented. The
method is also applied to the nonlinear dynamic soil-structure-interaction
analysis of an uplifting rigid block. A more detailed presentation of the method
and of the example problem may be found in Ref. 2.

IMPLEMENTATION BY SEGMENTING APPROACH

The implementation of the HFTD procedure is best illustrated by the analysis
of a SDOF system of mass m, stiffness k and damping ¢ subjected to a force
excitation P(t). This system is analyzed by the HFTD procedure as if it were
nonlinear. The pseudo-linear SDOF system is of mass L stiffness ko and damping

Co The equation of motion to be solved in the jth iteration is thus

(-u?

m, + fuc, + ko) uj(w) = P(v) + Qj(w) (1)

where u.(w), P(w) and Q.(w) are the Fourier transforms of the displacement uj(t),
of the exciting force P(t) and of the pseudo force Qj(t). The latter is obtained
in the time domain as

Qj(t) = (mo—m)uj_1(t) + (co-c)uj_1(t) + (kO-k)uj_1(t) . (2)
The pseudo force Q1(t) is identically zero in the first iteration (j=1).

A "brute force" solution of Eq.(1) often leads to divergent results. This
phenomenon is circumvented by using a segmenting approach. The entire time span
for which the calculation needs to be performed is first divided into time
segments of -length AT consisting of one or several time steps. Starting with the
first segment s=1, the pseudo forces of the entire time period used in the
discrete Fourier transform are set to zero and are transformed to the frequency
domain where the equations of motion are solved. After the transformation back to
the time domain, the pseudo forces are recalculated for the first segment s=1 only
and the equations of motion are again solved in the frequency domain. Returning
then from the frequency domain typically results in convergence of the response
for all times up to a specific time tc' New pseudo forces are calculated only for

times larger than tc within this particular segment s and a new iteration is
started. This procedure is repeated until tc coincides with the last time value
sAT of this segment s, after which the next segment s+1 is investigated.

It is of the utmost importance not to update any response quantity or pseudo

force on that part of the time span which has previously converged, i.e. for times
less than tc. Should such updates be performed, some very small changes in

response would occur from one iteration to the next for times t < tc . These small

changes affect the response of that part of the segment investigated which has not
yet converged. This can cause divergence, especially when a true/false situation
of the type encountered in contact problems occurs.
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CRITERION OF STABILITY

Spectral Radius It is known (Ref.3) that the static counterpart of the HFTD
procedure applied to a SDOF system converges only if the stiffness ratio k/k0

between the instantaneous nonlinear stiffness k and the pseudo-linear stiffness k0

remains between 0 and 2. For a multidegree-of-freedom system in harmonic motion
characterized by the instantaneous nonlinear dynamic-stiffness matrix [S(w)] and
the pseudo-linear dynamic-stiffness matrix [So(m)], the corresponding condition is

plw) <1 (3)
with

plu) = max; 1 (w)l (4)

where X.(uw) is the ith eigenvalue of

[1] - [5, (w17 '[S(w)] (5)

The matrix [I] is the identity matrix, w is the circular frequency and p(w) is the
so-called spectral radius.

This condition is however too restrictive in the case of a transient
analysis. The following consideration must also be made.

Initial Value Theorem The HFTD procedure converges in a time progressing manner,
i.e. later times converge only after earlier times have already converged. In an
favourable situation (mild nonlinearities), convergence can be reached by treating
the whole time span of interest at once; several time steps will then generally
converge within a single iteration. In an unfavourable situation (strong
nonlinearities), convergence can only be attained by treating each time step
independently and sequentially. A necessary condition in order to achieve
convergence in any situation is thus that convergence be achieved when each time
step is considered separately, as one cannot hope to converge on several time
steps if convergence on a single time step is not guaranteed. Working with one
time step at a time basically corresponds to treating an initial-value problem. In
a discrete Fourier transform, the initial value f(0) of a function of time f(t) is
related to the value at w=-iQ of its Fourier transform F(w) by

f(0) ~ F(u=-iR)/At (6)

0 = N1/T is the Nyquist frequency, T is the period of time used in the Fourier
transform and N is the corresponding number of time steps of length At (At=T/N).

Criterion of Stability Combining Eqs.(3 and 6) leads to the the conclusion that,
for a transient excitation, the condition referring to the harmonic case should
be formulated for the Nyquist frequency only. The criterion of stability thus
states that the spectral radius evaluated at w = -iQ must be less than unity, i.e.

pw=-iQ) < 1 (7)

Numerical Verification The SDOF system introduced earlier is analyzed for the
following values (in consistent units): m=9, k=5'685 (natural period of 0.25),
c=18.1 (critical damping ratio of 0.04), k0=5‘685 and 1'895, c0=18.1,

-479



P(t) = 100[-3sin(8Tt) + 9sin(247mt)] for 0<t<2 and zero otherwise, and My variable

so as to obtain a wide variation of p(u=-i). The response is calculated for a
time span of 3.2 using time steps of 0.01 (320 time steps).

Fig. 1 shows the relation between the value of the spectral radius p(w=-if)
and the optimum number of segments and minimum number of iterations, respectively.
The spectral radius p(w=-iQ) is evaluated from the following equation

2 s 2
plu=-if) = 11 - -8 mrduc +k o gq 0 Qim0 k (8)

2 .
- + +
wmy + fuc g k0 1]

The sign of p as obtained by disregarding the absolute value in equation 8 is kept
in the Fig. for the sake of clarity.

The optimum number of time segments depends on the value of the spectral
radius p{w=-iQ). The more the latter tends towards unity, the larger this number
is. The dependence of the minimum total number of iterations on the value of the
spectral radius p(w=-iQ) is similar to that of the optimum number of segments.
Typically, it becomes more difficult to reach convergence as p(w=-i) tends
towards unity. The criterion of stability is fully sustained by these results.

APPLICATION TO AN UPLIFTING RIGID BLOCK

Model The HFTD procedure is particularly attractive when applied to nonlinear
situations which cannot be analyzed easily by other formulations. This is the case
in the following problem. The system investigated consists of a rigid block of
height 2h, width 2b, mass m and mass moment of inertia I referred to the center of
mass M (Fig. 2). The block rests on 4 circular foundations of radius a placed at
each corner of the block. Only the vertical and rocking motions w(t) and 8(t) of
the bottom center of the block are considered in the calculation, with the
horizontal motion being assumed to be identical to the ground motion. The

numerical values used are: h=9 m, b=6 m, m=12.7-106 kg and I=6.4-109 kg-mz. The
radius a equals 4 m, the shear wave velocity cs=750 m/sec, the shear modulus

G=1.3-106 kN/m2 and the Poisson's ratio v=1/3. Only the vertical stiffness Sz(m)

of the individual foundations defined by the closed-form solution for a rigid
circular massless foundation on the surface of a halfspace is considered here
(Ref. 4). The system is subjected to the idealized earthquake ground acceleration

ug(t) = g/10-[-3sin(81t) + 9sin(24mt)] acting during 2 seconds (g = 9.81 m/secz).

Nonlinear effects are present in the system due to the fact that the excitation is
large enough to produce uplift of the block. A corner of the block is assumed to
lose contact with the supporting footing whenever the interaction force becomes
positive (tension) and to gain contact whenever the upward footing displacement
becomes larger than the upward corner displacement.

The pseudo-linear system is logically selected as the one in which no uplift
occurs. The pseudo forces then compensate for the interaction forces as obtained
under the assumption of no uplift (pseudo-linear system). They are nonzero only
when uplift occurs.

Results The high level of nonlinearities occurring in this application may be
appreciated by referring to Fig. 3 in which the pseudo forces are shown. Uplift
(characterized by nonzero pseudo forces) is seen to occur over a relatively large
portion of the time span of interest. In addition, the comparison of the pseudo
forces with the interaction forces (Fig. 4) shows that they are of similar
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magnitude. Because the nonlinear system and the pseudo-linear system do not have
the same number of degrees of freedom (3 DOF in case of uplift of one corner and 2
in case of no uplift), the spectral radius must be obtained by a limiting process.

It is found that p(w=-iQ) tends towards unity from below (i.e. tends towards 17).
In spite of all this, no difficulties are encountered in the application of the
HFTD procedure. Convergence is already reached when using only 2 time segments.
The power of the HFTD procedure is clearly demonstrated by this application which
is typical of nonlinear soil-structure-interaction problems.

CONCLUSIONS

The HFTD procedure is very attractive when analyzing nonlinear dynamic
systems whose structural properties are originally defined in the frequency
domain. A successful implementation of the procedure requires the introduction of
time segments and the satisfaction of a criterion of stability. The latter depends
on the properties of the system investigated and on those of the pseudo-1inear
system at the Nyquist frequency only. The application of the procedure to the
problem of an uplifting rigid block demonstrates the potential of the method in
solving nonlinear soil-structure-interaction problems.
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Fig. 1 - Results of HFTD calculations of SDOF system (Ref.2)
a) optimum number of segments versus p{w=-iQ)
b) minimum total number of iterations versus p(w=-iQ)
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Fig. 2 - Uplifting block investigated (Ref.2)
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Fig. 3 - Pseudo forces (Ref.2)
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Fig. 4 - Interaction forces (Ref.2)



