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SUMMARY

This paper investigates the dynamic behavior of two kinds of soil-pile system
which are a floating pile in a half-space and a supporting pile in a surface layer
on a rigid bed rock by an analytical method. As two kinds of rigorous solution
obtained from three dimensional elastic wave-propagation theory are applied to
solve soil-pile interaction, soil dynamics is sufficiently estimated. Significant
properties of depending upon the different conditions of the pile tip in the
different elastic solids are clarified. The validity of the method is discussed in
the comparison with a similar previous static study.

INTRODUCTION

It is the purpose of this paper to investigate the basic dynamic behavior of
soil~pile interaction by the analytical method presented by the authors? The
complete solutions described below are applied in this method to solve soil-pile
interaction problem. These solutions are to the problem of an elastic solid
subjected to a harmonic point load in its interior and were obtained by three
dimensional elastic wave-propagation theory in a homogeneous, isotropic medium as
discussed by the authors. The solutions were obtained for tweo kinds of elastic
solid :a half-space and a surface layer on a rigid bed rock. Those are regarded as
Green's function satisfying the boundary conditions for each type of solid. This
study is an extension of the well known static soil-pile analysis by Poulos to
dynamic analysis, and clarifies the properties of a laterally loaded pile in
taking into account the different responses resulting from two solutions. The
studies by Poulos have greatly contributed to the dynamic pile investigations in
the evaluation of the results. This paper discusses a comparison of the basic
responses of a floating pile in a half space and a supporting pile in the surface
layer. Novak and Nogamf)presented the dynamic analysis of soil-pile interaction
for the first time based on continuum analysis. Considering the great developments
in soil-foundation problem using Lamb's solution, it should be possible to
effectively solve soil-pile interaction in similar manner using the solution of a
harmonic point load in order to properly estimate the effect of soil radiation
damping.

THE COMPLETE SOLUTION OF A HARMONIC POINT LOAD IN AN ELASTIC SOLID

Firstly, two kinds of complete solution are presented because studies on
their properties are available for the prospect of the responses of soil-pile
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interaction. The following two equations are the solutions for a half-space and
+he surface layer. The lateral displacement in a half-space subjected to a
laterally harmonic point load without material damping is eq. (1).
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where X.: Amplitude of a point load; G: Shear modulus of soil; c: Acting
position of 2 point load; Cl’ C,: Velocity of longitudinal and transverse waves,
respectively, and B =%/C_, —w/C2 X, ¥, z: Adopted orthogonal Cartesian

coordinates; kl, k2: Variables after Fourier transform of x, y coordinates.

This solution coincides with Mindlins)solution when frequency approaches zero.
A similar solution for the surface layer is eqg.(2).
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where H: Surface layer thickness.
The solution coincides with eq. (1) if the surface layer thickness is

infinite. The denominator in the first term of eq.(1) is Rayleigh function of a
half-spoce, and F(§) in eq. (2) is that of the surface-layer. The solutions of

-558



ers. (1) and (2) are determined by carrying out complex numerical
solutions consist of three parts: fundamental solution, potential fu
satisfying the boundary conditions derived from the Helmhol+tz decompos
theorem, and the residues. Numerical integration is necessary to obtain Cauchy
principal value in inverse Fourier transformation. As the range of integration
includes singular points, their positions should be obtained from Rayleigh and
Love functions before integration despite the troublescme procedure .

The displacements (U,) at the origin (0, O, O) on the free surface under a
lateral harmonic point load acting at 8, H/B,c=0.5 are plotted in Fig. 1. Poisson's
ratio (¥) for each elastic solid is takén tG be 1/3. As the expressions are
nondimensional, displacements with dimension are obtained after multiplying them
by the coefficient (X]g,e!®'s4;G),The response displacements in Fig. 1 are the
results of the varying load position from about O to 3.5, so in other words, B.c
is located in the middle of the surface layer. The displacements of the two 2
solutions change with moving B8,c, and the general tendencies in both responses are
similar. However the characteristics of the surface layer are different from those
of a half-space because of the strong influence of the resonance frequencies. Both
sets of results become gradually closer with increasing frequency except close to
the resonance frequency. In order to clarify the influence of the boundary
condition at the bottom of the surface layer, the deflection curves resulting from
changing the applied load position by equal intervals of 0.4 for the surface
thickness B_H=4.0 are shown in Fig. 2. The differences between the responses
increase with increasing depth of the applied load, especially in the imaginary
part. As there are resonance frequencies in the surface layer, the dynamic
response in this case exhibits more complex features than for a half-space. The
movement of the load has much effect on the response and this tendency is closely
related to soil-pile interaction responses.

ANALYSIS OF SOIL-PILE INTERACTION

The procedure employed here is similar to the method presented by Poulos,
except that dynamic solutions are given. Two types of soil-pile system are
analyzed to compare the influence of different conditions of the pile tips in
different elastic solids. These consist of a floating pile in a half-space,
case(a), and a supporting pile in the surface layer, case(b). A laterally harmonic
load (Qei®!) acts at the pile head. The method is only briefly described below
because full details are given in the reference. The pile is assumed to be a thin
vertical strip corresponding to the center of the cross section, and the interface
between the soil and the strip is assumed to have a perfect contact. L and d
denote the length and width of a pile, respectively. The pile is divided into n+l
elements in order to apply finite-difference method to the governing equation for
lateral motion of the pile. The centers of all elements except those at both ends
satisfy the displacement equilibrium, including boundary conditions. Distributed
pressures are assumed to be uniform on each element.

The governing equation is
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where U.: Lateral displacement of the pile; Mp: Mass density per unit length

of the pile? %pIp: Flexural rigidity of the pile; P(z): Amplitude of the force of
resistance of the soil.

3
Boundary conditions at the fixed head (z=0) for both cases are EpIp(d~ pU;/
d23)=Qe ; EpIp(d pU,/dz)=0. Boundary condigions at,the pile tip (z=L) gor a
floating pile are free. So these are EpIp(&” pUi/dz"}=C; EpIp(d” pU,/dz")=0. The
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boundary conditions of it for a supporting pile are fixed. So these are ,y,=0;
EpIp(d pU,/dz)=0; The relation between the soil displacement and the pile load can
be represented by the following matrix for the discrete system of the dividing
elements. That is { Uy} =[F] {P'} ! Where[F]is displacement function matrix
obtained by integrating the solution of a hamonic point load in the interior of
each solid across the element area of the strip,/P’}is amplitude matrix of the pile
load, and{ U.} is lateral displacement matrix of the soil at the center of each
element exgept both end elements or at the points of both end elements.

After expressions of discrete system for eq. (3), {PI;{pU,} should be equal to
(P U:lin the matrix, and then either displacement or resistance force is
determined. Considering the discussion in Fig. 1, studies are conducted to obtain
the differegt properties of two kinds og soil-pile system with physical parameters
Mp=(2.4 t/m") section area/(9.8 m/sec”); L=4m; slenderness ratio d/L=0.1;and
B,.L=2.0, 3.0, 4.7, 6.0. These cases are designated case(a)-2.0, case(a) -3.0,
...case(b)-6.0. Fig. 3 indicates each displacement function for the 11 elements.
The real parts of case(a) show a similar tendency to those of case(b). However, as
the load approaches deeper positions near the fixed end, the difference increases.
The displacement in case(b)-4.7 appears to be influenced by the second shear mode
of the surface layer. As for the imaginary parts, differences between cases(a) and
(b) occur when the load acts at deeper positions. The response tendency depends
upon the value of 8.H. Thus, the discrepacy between case(b)-4.7 and case(a)-4.7 is
large, but it is small for the cases when B_H=6.0 even though the depth of the
applied load is greater. The displacement with dimension can be obtained after
multiplying the amplitude in Fig. 3 by x'ei“‘/(4=G82), where x'is the amplitude of
the uniform pressure acting on each element. Compared with the real parts, the
properties of the imaginary parts are characteristic because there are large
differences between both cases with the load applied at deep positions.

The vaEiations of the pile displacements for the pile flexibility factor
KR:EpIp/EsL , where Es is Young's modulus, which corresponds to relative relations
beE%een_ghe §ail and gile are plotted in Fig. 4. KR is given the four values
10 ,10 7,10 ",and 10 ~. The displacement with dimension per unit load is obtained
after multiplying the amplitude in Fig. 4 by(e'“£/4nGBZL While the imaginary parts
don't depend upon KR for small values of B_L such as 2.0 and 3.0, they do vary
with KR for relatively large values such as 4.7 and 6.0. Special features are
observed foriﬁq=10— because it strongly reflects the fixed end condition. As KR
becomes small, the discrepacy between cases (a) and (b) decreases because the
influence of shallow applied loads is greater and that of deep loads is less. It
can be imagined that the opposite phenomenon occurs for large KR' Although
case(b)-3.0 and case(b)-4.7 are located at similar points near the resonance
frequency, and the response in case(b)-4.7 is siginificantly influenced by this
fact, the same cannot be observed in case(b)-3.0 especially in the imaginary part.
One reason for the different properties is that the resonance frequency in
case(b)-4.7 comes from the double poles in Love function, and it corresponds to
Rayleigh function for case(a)-3.0. As for the case of BpL=6.0, the difference
between cases (a) and (b) is slight because the influence of the resonance
frequency is small and it exists at a relatively high frequency.

Fig. 5 shows influence factors (IpF) defined as pU, =IpF Qe!®t! /(Es L)at the
pile head. IpF corresponds o impedance in soil-pile interaction. It can be seep
that the differences between cases(a) and (b) arise when Ko is greater than 10 .
This observation agrees with Poulos'™study. The effective contribution of the
different conditions is reflected more sensitively in the imaginary part than the
regé part. The response in the real part depends very much upon KR greater than
10 , whatever the value of B.L. On the other hand, the range of the dependence
on KR in the imaginary part varies with BZL'
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COMPARISON WITH OTHER SOLUTION AND CONCLUSION

The dynamic responses of short and long piles of the floati
half-space are obtained in order to make a comparison with Foul
physical parameters used are L/d =10 and 100 for short and long
respectively with »=0.4, The displacement amplitudes of the resonanc ve

three positions of tge pllg (pllg head, 0.2L from the head and pile tip! are shown

T
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i

in Fig. 6 for K_ =10 °, 10 7, . The displacement with dimensicon is ;éta'ned
after carrying out similar manner for the amplitude 1h Fig, & to case of Fig. 4.
The responses of the long pile depend very much upon freguency ang ¥, in any
position. However the tendency of dependence on XK is different forheach point.
On the other hand, the dependence on frequency is small for the short pile because
it is affected less by the dynamic behavior of the seil +than the iong pile. It may
be significant for pile behaviors to pay much attention to the properties at deep
positions. A comparison is made in Fig. 7 with Poulos' result for v=0.5 . The
present solution is sufficiently close to it after taking into account the slight
differences of low frequency(0.5Hz) and Poisson's ratio of 0.4 are adopted in the
analysis.

In conclusion, the different behaviors of two types of soil-pile system are
analyzed using two kinds of complete solution. Special features of the surface
layer due to the resonance frequency affect the responses of depending upon Kg for
soil-pile interaction.

As the present method has been verified and the procedure is general, there
is much possibility of being able to extend the method to soil-pile group
interaction.
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