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SUMMARY

In this paper a boundary element formulation is used to evaluate the dynamic
response of pile groups embedded in homogeneous and nonhomogeneous soil media. To
obtain the Green>s functions for semi-infinite media the equations of wave propaga-
tion are solved by Fourier and Hankel transforms. The results of the analysis are
presented in nondimensional form to demonstrate the basic features of dynamic
stiffnesses and seismic response of pile groups in different soil media.

INTRODUCTION

Early studies on pile groups have primarily focussed on static pile behavior
(Refs. 1,2). In these studies Mindlin>s fundamental solution (Ref. 3) for the
displacement field within a semi-infinite medium was used to couple the flexibility
matrices of piles and the soil medium through boundary element techniques. Although
these studies were unable to provide any qualitative information on dynamic
aspects of the problem their methodology was used later for dynamic analyses.
Earlier contributions to this subject (Refs. 4,5) revealed that the dynamic
behavior of pile groups was strongly frequency-dependent. This stimulated exten-
sive research on this subject. Most of these studies were based on the boundary
element method. The Green»s functions in these studies were obtained either
numerically by axisymmetric finite element methods (Ref. 4,6) or by numerical
solution of the three dimensional wave propagation equations (Refs. 7,8,9,10).

In addition, a number of approximate methods have been developed for dynamic
analyses of pile groups (Refs. 11,12,13,14).

The objective of this paper is to study the characteristics of the horizontal
and vertical dynamic stiffnesses and seismic response of pile groups in homogeneous
and nonhomogeneous media. Fig.l shows the problem under consideration. The
nonhomogeneous medium in this study is a semi-infinite medium in which the elasti-
city modulus increases linearly with depth up to the pile tips and remains
constant beyond (Fig.1l-b). The homogeneous medium, on the other hand, is a visco-
elastic half-space with an elasticity modulus equal to the constant modulus of the
nonhomogeneous medium (Fig.l-c).

FORMULATION

The surface tractions that develop at the pile-soil interface can be consi-
dered to consist of lateral and frictional components. Fig.2 shows the distribution
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of lateral tractions on one of the piles in a group (other components of surface
tractions have similar distributions). The pile-soil interface is discretized
into a number of cylindrical boundary elements and the actual distribution of
surface tractions is replaced by a piecewise-constant distribution over boundary
elements. If U denotes the vector of nodal displacements and P denotes the vector
of force resultants on boundary elements then, considering the equilibrium of the
soil mass, one can write

U=FgP (1)

in which Fg denotes the frequency-dependent "flexibility matrix" of the soil
medium, relating piecewise-constant harmonic loads to the steady-state average
displacements of the boundary elements. (In this formulation, quantities such as
U and P are complex; their variation with time is given by the factor exp(iwt),
where w is the frequency of harmonic vibration). Similarly considering the equilib-
rium of piles one can write
11=WU°-FPP
T (2)
P, = KpU, + ¥°P
in which U, is the vector containing the displacements of pile ends and P, is the
associated force vector, ¥ is a matrix relating the three components of displace-
ments at the nodes of boundary elements to the displacements of pile ends, Fg is
the dynamic flexibility matrix of piles with clamped ends, and Kp is the dynamic
stiffness matrix of piles.

Combining Egs. (1) and (2) one gets
P, = {Kp+¥T (Fg+ Fp) ~1¥}U, = K,U, (3)

K, is a matrix which relates only the five components of forces at each end of
piles to the corresponding displacements.

To obtain expressions for K,, F, and ¥ one has to solve the dynamic beam
equations with the appropriate boundary conditions at the two ends (Ref. 7). To
calculate Fg, one needs to evaluate Green-s functions for buried uniform ring
loads (distributed over the surface of cylindrical boundary elements). for this
purpose, the three dimensional equations of wave propagation were solved numeri-
cally by means of Fourier and Hankel transforms (Ref. 7). It should be noted,
however, that the matrix thus obtained corresponds to soil mass without cavities
(the spaces occupied by piles). It has been shown that (Ref. 7) the effect of
cavities can be approximately accounted for by subtracting the mass density and
elasticity modulus of the soil from those of the pile

In order to obtain dynamic stiffnesses of a rigid foundation (pile cap) to
which the piles are connected one needs to impose the appropriate geometric and
force boundary conditions at the pile heads and pile tips.

To extend this formulation to seismic analyses one only needs to express the

displacements U as the summation of free-field displacements U and the displace-
ments caused by pile-soil interface forces P; that is

U=TU+FgP 4)
Combining Eqs.(2) and (4) one gets
P,=K.U, +Pe =K,Uo - ¥T(Fg +Fp) "' § 5)

where Pg defines consistent fictitious forces at pile ends which reproduce the
seismic effects. Again, one has to impose the appropriate boundary conditions at
pile ends to obtain the transfer functions from the ground motion to pile cap.
Free-field displacements and Green»s functions can be obtained by a discrete layer
matrix formulation (Ref. 7), In which a nonhomogeneous medium should be replaced
by a set of homogeneous layers.
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RESULTS

In this study, the elasticity modulus, mass density, Poisson>s ratio and
material damping ratio of the soil are denoted by Eg, pg, vg and B, respectively
and the corresponding quantities for the piles are denoted by E ,Sp sVpand Bp. 1;1
addition L and d define the length and diameter of piles, and s denotes the dis-
tance be tween adjacent piles. Finally a,=wd/Cg defines the nondimensional fre-
quency, in which w is the frequency of harmonic vibration and Cs is the largest
shear wave velocity of the soil profile.

The quantities of interest in this study are the dynamic stiffnesses and the
Seismic Tesponse of pile groups. The stiffness functions are complex quantities
which can be expressed as

KG =6+ a,cC (6)

In the results presented in this paper the dynamic stiffnesses are normalized
with respect to the associated static stiffness of a single pile in the group
(kS (0)). The seismic motion, in the present study, is assumed to be due to verti-
cally propagating shear waves in the soil medium that produce a free-field ground
surface displacement ug. These waves induce both a translation and a rotation in
the pile cap. The transfer functions for these quantities are complex-valued func-
tions and will be presented in terms of their absolute values.

For the results presented here it has been assumed that Bg=0.05, vg=0.4,
Bp=0.0, vp = 0.25, L/d = 20, Ps/pp= 0.7 and Es/Ep=1O‘2 (note that for the nonhomo-
geneous medium Eg represents the maximum value of elasticity modulus in the soil
profile (Fig.1-b). The quantities of interest have been evaluated for 3X3 square
groups with two different pile spacings (s/d=2.5 and 5).

Figs.3 and 4 show the normalized horizontal and vertical dynamic stiffnesses
(kGand cGin Eg. 6 ) of a 3x3 pile group with a colse pile spacing (s/d=2.5) in
the homo geneous and nonhomogeneous media, described earlier in this paper (Fig.1).
Figs.5 and 6 show the same quantities for a 3x3 group with a wider pile spacing
(s/d =5) . These results suggest that the response of pile groups in the nonhomoge-
neous medium is more frequency-dependent than the response in the homogeneous
medium. In other words, the interaction effects, which are characterized by sharp
peaks in stiffness functions are more pronounced in the nonhomogeneous medium. The
fact that the behavior of piles (especially for horizontal vibration) is essen-
tially governed by the near surface soil properties and that interaction effects
in softex soil media are stronger than in stiffer media are (Ref. 7) help one to
understand these observations.

Figs.7 and 8 display the normalized dynamic stiffnesses of the same pile
groups in the nonhomogeneous medium of Figs.3 and 4 but computed by the conven-
tional superposition technique. In this technique, which was originally proposed
for statdic analyses of pile groups (Ref. 1), and was later extended to dynamic
analyses (Refs. 7,8), only two piles are considered at a time in the formation of
the global flexibility matrix. Comparison of the results of superposition method
and those of the three-dimensional method (dotted curves in Figs.7 and 8) )
suggests that for very close pile spacings this technique is not capable of provi-
ding accurate results. However, the accuracy of this method improves as the p%le
spacing dincreases. This is verified by Figs.9 and 10, where the I"esults ob'.calned
by the superposition method for dynamic stiffnesses of the same Plle groups.m'the
nonhomog eneous medium of Fig.5 and 6 are compared with the associated three-dimen-
sional results.

Finally Figs.11l and 12 display the absolute value of the tran§fer function
from ground surface horizontal displacement, ug, to the pile cap d}splgcemgnt for
the same pile groups for which stiffness characteristics were studied in Figs.3 to
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Fig.1l Nonhomogeneous and homogeneous media
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6. These results indicate that pile groups in the nonhomogeneous medium filter
out, to a greater extent, the high frequency components of the ground motion.

CONCLUSIONS

The results of this study indicate that the horizontal response of pile
groups is primarily governed by near surface soil properties, whereas the vertical
response is mainly influenced by the characteristics of deeper layers. In
addition, the interaction effects, which stem from pile-soil-pile interactions,
are stronger in the nonhomogeneous medium than in the homogeneous medium.
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