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SUMMARY

A time-domain Winkler soil-pile interaction model is developed from the
dynamic response behavior of a cylindrical plane strain continuous medium. The
model can rationally account for the slippage and gap at the soil-pile contact,
inelastic soil behavior, dynamic condition and pile~-soil-pile interaction. The
model is verified by using a more rigorous analysis method and field pile load
test results. Some numerical results are presented.

INTRODUCTION

Winkler soil model defined from the vibration behavior of a plane strain
cylinder-medium system has been developed in the dynamic pile response analysis.
This method is the most efficient in computation among various methods developed
and yet can reproduce the dynamic pile behavior amazingly close to the one
computed by using more rigorous methods (5). The time-domain model of this type
has been developed recently by Nogami, et al. Such a time-domain model is
essential for the analysis of nonlinear systems. The present paper describes
the time-domain nonlinear soil-pile interaction models for both axial and
flexural responses and presents some numerical results. Details and additional
materials of the present paper can be found in Refs. 1 through 4.

SIMPLIFIED SOIL-PILE INTERACTION MODEL

Winkler model as shown in Fig. 1 is considered herein for reproducing the
soil-pile interaction force in the dynamic response of pile foundations. At any
given depth, this Winkler model consists of an interface element and a soil
model. The interface element is the mechanism to produce the slippage and gap
at the soil-pile contact. The pile-soil-pile interaction in a pile group is
produced by the support motion at the fixed end of the Winkler model. In order
to reproduce the nonlinear and dynamic conditions rationally, the soil model is
formed by near—field and far-field elements connected in series as shown in
Fig. 1. They reproduce respectively the nonlinear behavior and the behavior
associated with the motions transmitted to the elastic region of the soil.

Near—Field Element The near-field element consists of ome nonlinear spring, kn’
and consistent mass, [m_]. The degradation effects are implemented in the
nonlinear spring. The consistent mass matrix is defined assuming a linear varia-
tion of the near-field soil displacement with a radial distance from the center
of the pile. The mass and stiffness matrices of this element are expressed as,.
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respectively

2
T %p r./r +3 r./r,+1 1 -1
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where r, and r. = radii of the pile and extent of the soil considered for the

near-fieéld, respectively; and p = mass of a unit volume of soil. The equation of
motion of the near-field element is

(P (6), B, (o™ = [m 1GE_ (), § ()7 + [k 1(u (6), u (e )

where u_ and p_ = displacement and force at the end connected to the interface
element; and uy and Py, displacement and force at the outer end of the element.

Far-Field Element Reviewing ‘the wave equation solutions obtained for a plane
strain cylinder-medium system, simplified expressions are obtained in the
frequency-domain for the force-displacement relationships of the far-field
element. The plane strain cylinder-medium system above referred is a vertical
massless rigid infinitely long cylinder in an infinite elastic medium. The
radius of the cylinder corresponds to the radial extent of the near-field soil.
The obtained expressions for vertical and horizontal motions are respectively

pw) = Ru(w) and p@) = ®mw’) uw (3)

where w = circular frequency; me = gm(vs) pwroz; gm(vs) = factor given in Ref 4;
and 1/K ngl l/(kn + iwcn)

The values k, and c, are frequency independent parameters defined by kj, kg,
k3) = Gg &k(Vg) (3.518, 3.581, 5.529) and (Cy, C2, C3) = Gg& (Vg) ro/Bs (113.097,
25.133, 9.362), where & (Vg )= factor equal to 1 for vertical motion and factors
given in Ref. 4 for horizontal motion. Eq. 3 indicates K is the stiffness of the
system consisting of three Voigt models connected in series. Thus, Eq. 3 implies
the responses u are the responses of the systems shown in Fig. 2.

The response of the system considered for the vertical motion to the trape-
zoidal force,varying from p(0) to p(At) during the period from t=0 through t=At,
can be expressed in an explicit form such that

un(t) = P(0) Hn(t) + P(At) In(t) (4)

Ztgh u(t) = ngl un(t), where being e, = kn/cn and 8(t) = 1 for t>0 and = 0 for
3

H (t) = 8(t) {exp (epdt)/(enht) - (1+1/(epht))} exp (~ent)/ky

I,(t) = 8(t) {(1-1/(eyht)) exp te At) +1/(epdt) } exp (-€qt)/ky (5)

A load time history is digitized at equal time interval At and linear varia-
tion with time is assumed. This load time history is considered to be a series
of trapezoidal load time histories. Thus using Eq. 4 and manipulating, the
response of the system considered for the vertical motion to this time history is
obtained as

up(tg) = up(ti_1) exp (-epht) + Hp(At) p(ty_1) + In(At)p(ty) (6)

Rewriting Eq. 6, and using u(t) = uj(t) + up(t) + uz(t), time-domain expressionms
for Eq. 3 are obtained respectively as

p(;i) = kf u(ti) +d and p(ti) = mfﬁ(ti) + d (7
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3
where k. = ngl l/In(At); and d = -k, nil {un(ti_l) exp (—enAt) + Hn(at)p(ti_l)}

Support Motion  The support motion is the motion transmitted from other piles.
The time-domain expression of the support motion is developed from the frequency-
domain analytical solutions obtained for the vibration of the plane strain
cylinder-medium system considered in the development of the far-field element.
Reviewing these analytical solutions, the following simplified expressions are
developed in the frequency-domain:

B
uw(w,r) = Qy lbo vertical motion
_ a0 0, 2 BB o o, 2 _ ro
u(w,r) = Q; ¢,/17 -Q, ¢, + Q; ¢;/n 8= 0
o o, 2 B B B B

u(w,r) = -QZ ¢2/T] + Q2 ¢2 + Ql ¢l ® = 90° Thorizontal motion (8)
where 6 = 0° and 90° correspond to the directions of the horizontal load and per—
pendicular to this direction, respectively; denoting a, = Wr./, and a, = wr /o
with o = P-wave velocity and B = S-wave velocity, Q%’S = nil 1/(k +ia 8 cn) and

CI,S = _ -2 . =y _ - . 4y . a,é _ n_ ? -

Q2 (aOL,B ) + l/(laoc,B ¥) -2 l/(kn+ 1a0L,BCn) o) = exp {—13(1 B(r—l

-y, )} and ¢g,B=exp {—iaa g (T-0.5 -wa,s)} with being ¥ = -(n-l)/l;,lpé = (n-1)/4n

b k) - -
and n =/2(l—vs)/(r-2vs) . The values kn, kn, ) and c  are given in Table 1.

An inverse Fournier transform of Eq. 8 leads to the response due to a unit
impulse load. Integrating this expression with time, the response due to a
trapezoidal load time history can be obtained. A piecewise linear time history
is considered to be a series of trapezoidal time histories. Thus, superimposing
the responses due to a series of trapezoidal load time histories and maniEulating
result in u(ti,r) = qB(t.,r) for vertical motion, and u(ti,r) =q°‘(ti,r')/n -
q,(t51) +}q‘l"(ti,r)/n2 and u(t,,x) = —q‘%(ti,r)/n2 + qg(ti,ra) +q§8 (t;,r) for & = 0°

° . . 2 o a B = Qs
a&%89((t) Zc;rizorétalun’wtlons, iesg?ct_lvelgf, whgre th,]S s nélsn (ti’r) and
q2 i = n=1 Sa (ti)r) Sb (ti’r - n=1 sn (ti’r) (9)

Each term at the riight-hand side of Eq. 9 can be computed from the following
expressions:

s8(t;.m) = s8(gy 10 exp (-ep8e) + B (Be,Wp(e;o ) + T (e,D)p(e )

(1/2m) (AtS/r) Egl p(tj) - (1/4m) (AtS/x) p(tio)

<)
sa(ti,r)

S § N 2m){Aes/r)?
syt = s (£, ) + (1/2m) (Atd/r) j§1 p(ty) - (1/2m<Ae8/x)™ pltyg_4)

~(5/12m) (Ae8/D) pltyy) 6= o or B (10)

where H,(At,r) and In(At,r) are identical-to respectively Hn(t) and I,(t) given
in Eq. 5 but are dependent on r through k, and cp. -In the above expression, the
response due to the load applied at t = tj arrives at T during the period
between ti.q and tj. This requires tij_1<tj0 t Testy in which_'rc = ro(f-1) /B for
vgljtical motion, T = ro(f—l—wa'ss) for qf]J.L’B and TCc = ro(r -0.5 —wa’s) for
9o

Interface element The mechanisms of the interface elements are shown in Fig. 3.
In a vertical motion the slippage occurs at the soil-pile contact when maximum
friction force reaches to the allowable force fx-. The interaction force is
equal to fj, . during the slippage; The contact condition resumes at any time
during the slippage as soon as U-u_, (where U = pile shaft velocity) becomes zero.
The interface element for the horigontal motion consists of a rigid frame and
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expansion joint. The expansion joint increases the Opef}ing of the.frame by the
plastic deformation of the soil. The amount of change 1n the’openlng is given by
Muga (ty) = Aup(ti) x (1-B8), where Auga = amount of change in opening, AuP =
incremental plastic soil displacement an% B = empirical factox.

EQUATION OF MOTION OF SOIL-PILE SYSTEM

The dynamic responses of a pile foundation are formulat@j‘-d b}" coupling the
equation of motion of the pile shaft with that of the soil-pile interaction model.
The solutions of the equations are given in Refs. 1 through 4.

ASSESSMENT OF APPROACH AND NUMERICAL RESULTS

The computed results by the proposed soil model are compared in Figs, 4 and
5 with those computed by the -dynamic BEM-FEM analysis, in Which the nonlinear
finite element method is applied in the region within 6rg and the boundary method
is applied at the outer end of the finite element region. The nonlinear behavior
of the near-field stiffness is defined from the static FEM analysis for a single
cylinder. The proposed model can predict fairly well the responses of cylinders
in both the elastic and inelastic continuous medium.

The statically applied cyclic load tests and vibration tests were conducted
on an identical full-size pile at a common site. In order to assess the modeling
concept proposed herein, the frequency-domain nonlinear soil-pile interaction
model is also developed adopting the modeling concept proposed. The model para-
meters are determined from the static cyclic pile load test results. Then the
pile responses in the vibration test are computed with this defined soil-pile
interaction model, The computed results are compared with the field test results
in Fig. 6. The soil-pile interaction model based on the proposed modeling
concept can reasonably well predict the dynamic response of the pile in the
field, once the model parameters are defined from the static conditions.

Fig. 7 shows the soil-pile interaction force for harmonic pile shaft
displacement. The real and imaginary interaction forces are determined from
those curves and are plotted in Fig. 8 for various harmonic displacement
amplitudes. The imaginary part (damping) is reduced significantly at high
frequencies when the nonlinearity develops.

Fig. 9 shows the complex stiffness of 2x2 pile computed for elastic and
inelastic conditions. Undér the inelastic condition, an elasto-plastic behavior
is considered in the near-field element and the maximum force allowed in the
near-field element spring (pe) is assumed to increase linearly with depth. The
nonlinearity induced in the soil reduces the pile-soil-pile interaction
significantly.

CONCLUSIONS

The proposed soil-structure interaction model can ratiomally account for the
gap and slippage at the soil-pile contact, the nonlinear soil behavior, the
dynamic conditions, and the pile-soil-pile interaction. All of these are handled
in the time-domain. The model is based on a Winkler's hypothesis and thus is
very efficient in a computation.
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