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SUMMARY

This paper describes the seismic response characteristics of the strains of
in-ground cylindrical tanks. The earthquake observation has been carried out on
an actual in-ground LNG storage tank. From the observed data, the
circumferential components of the strains were expanded with finite Fourier
approximation in circumferential direction. In the circumferential distribution
modes, the axisymmetric mode or the sine mode is predominant. The -latter mode is
caused by the ring deformation mode. The FEM analyses lead to the following
conclusions; (1) The sine mode is mainly caused by the SH body wave. (2) One of
the earthquake ground motion components which cause the axisymmetric mode is the
Rayleigh wave.

INTRODUCTION

It is important to understand the dynamic stress or strain on huge in-
ground cylindrical tanks for aseismic design purposes. In order to measure the
dynamic strain of the tank which is made of reinforced concrete, the earthquake
observation has been carried out. The accelerations of the tank and the ground
and circumferential component strains near the external side of the tank wall
have been measured. The strainmeters are arranged at eight points along the
circumference at equal interval. The relations between the tank strains and the
ground motion components were studied using the earthquake observation data and
Finite Element Method (FEM) analyses.

EARTHQUAKE OBSERVATIONS

The outline of the earthquake observation system, the tank and the ground is
shown in Fig.l. The tank is 68.82 m in outer diameter and 35.5m in height. The
thicknesses of the side wall and of the bottom plate are 2.2 m and 0.6 m,
respectively. The earthquake observation site is composed of a banking, weak
silt and firm mud stone. The shear wave velocity, Vs, of the ground is also
shown in Fig.l. The examination were done for the two earthquakes shown in table
1.

EARTHQUAKE GROUND MOTIONS

The accelerations recorded at AGl, which is shown in Fig.l, during
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IZUOOSHIMA KINKAI OKI and KANAGAWAKEN SEIBU earthquakes are shown in Fig.2. As
for IZUOOSHIMA KINKAI OKI earthguake, the largest acceleration appears in the
horizontal X component as indicated in Fig.2, whose evolutionary power spectrum
(EPS) (Ref.l) is shown in Fig.3a. The peaks of EPS which range from 0.3 Hz to 5
Hz in frequency domain almost concentrate at about 13 seconds in time domain, and
the dispersion characteristics of the surface wave(Ref.2) can not be found in
this region. On the other hand, the traveling speed of the seismic wave in that
region is more than 8.8 km/s, which is calculated by the arrival time differences
of the maximum values of the X component accelerations at AGl, AG2 and AG3. From
these two results, the X component of the ground motion at about 13 seconds is
presumed to be an SH body wave which travels almost vertically from the bottom
upward.

Fig.3b shows the EPS of the up-down component acceleration of KANAGAWAKEN
SEIBU earthquake. 1In this EPS, the dispersion characteristics can be seen in the
region from 40 to 50 seconds in time domain and from 0.3 to 0.7 Hz in frequency
domain. The phase velocity of the earthguake ground motion in the region is
770m/s at 0.47 Hz, which is calculated by the EPS's peaks arrival time
differences at the three points AGl to AG3. The value of this velocity is
between the phase velocities of the first and second modes of the Rayleigh wave
calculated by FEM. But in the theoretical dispersion curves of group velocities,
the 2nd mode only has a stationary value at around 0.47 Hz. Thus, the earthquake
ground motion of the region is presumed as being the 2nd mode of Rayleigh wave.

OBSERVED TANK STRAINS

Fig.4 indicates the strain of the tank. The circumferential distribution
modes of the strains were obtained by expanding the strains at 8 points with
finite Fourier approximation in the circumferential direction. The strains at
points 3-3 or 8-8 indicated in Fig.l were, unfortunately not measured and these
strains were estimated by means of Lagrange's interpolation formula using the
measured strains. The absolute values of the strain coefficients are shown in
Fig.5. As for IZUOOSHIMA KINKAI OKI earthquake, as shown in Fig.5a, the sine
distribution mode (the harmonic number of finite Fourier approximation n=1) of
strain is prominent at about 13 seconds. Fig.6a shows the strain distributions
at the typical times indicated in Fig.4a with circles. 1In this figure, the solid
and the dotted lines indicate the strains at GL-9.75 m and GL+3.075 m (shown in
Fig.l), respectively. At about 13 seconds when the largest strain is generated,
the strains of the semicircle of the tank are in tension and of the opposite
semicircle are in compression. As for KANAGAWAKEN SEIBU earthquake, as indicated
in Fig.5b, until around 25 seconds the axisymmetric (n=0) and sine (n=1)
distribution modes of the strain are predominant, and after about 25 seconds only
the axisymmetric distribution mode is predominant. Fig.6b shows the strain
distributions at the typical times indicated in Fig.4b with circles. After about
25 seconds, it is noticed that the axisymmetrical mode is predominant. Besides,
from Fig.5, the strain coefficients of n=2 and 3 are much smaller than those of
n=0 and n=l1 in the case of either of the two earthquakes.

ANALYSIS OF TANK RESPONSE TO BODY WAVE

The ground and tank coupled FEM model was used to analyze the earthquake
response of the in-ground cylindrical tank. The model is an axisymmetric model
subjected to an axisymmetric or an asymmetric dynamic load caused by the
earthquake. Fig.7 shows the vertical section of the FEM model. On the
boundaries the model is provided with the viscous dashpots proposed by Lysmer et
al., which absorb wave effects emanating from the tank.

(1) Response to the SH body wave: The X component acceleration around 13 seconds

I1-764



of IZUOOSHIMA KINKAI OKI earthquake was used for calculation, which is assumed to
propagate vertically from the bottom upward. The calculated X component
acceleration of the tank is indicated in Fig.8 in comparison with the observed
one. Fig.9 shows the calculated circumferential component strain at 6-6 point
shown in Fig.l and compares it to the observed one. Fig.8 and 9 indicate that
the calculated acceleration and strain by FEM model agree well with the observed
ones. From the results it can be said that the strain of predominant sine
distribution mode (n=1) is caused by an SH body wave propagating vertically from
the bottom upward.

(2) Response to P body wave: As an example of P-wave propagating vertically
from the bottom upward, the up-down component acceleration of KANAGAWAKEN SEIBU
earthquake shown in Fig.2b was used. The calculated up-down component
acceleration at ATl and circumferential component strain are shown in Fig.1l0 in
comparison with the observed values. The component of the observed strain is an
axisymmetric component (n=0) of distribution mode. Fig.10 indicates that the
calculated up-down component acceleration of the tank agrees well with the
observed value. But the calculated strain is much smaller than actual strain.
Thus it seems that the P-wave is not the cause of the predominant tank strain of
the axisymmetric (n=0) distribution mode.

ANALYSIS OF TANK RESPONSE TO RAYLEIGH WAVE

As an example of a Rayleigh wave, the region from 0.3 to 0.7Hz in frequency
domain and from 20 to 52 seconds in time domain of the epicentral and up-down
component accelerations observed at AGlL for KANAGAWAKAN SEIBU earthquake were
used. The earthquake response analyses to Rayleigh wave were carried out as
follows: 1) The Rayleigh wave displacement modes are calculated of the typical
five frequencies in the range 0.3-0.7Hz as eigenvalue problems. 2) The
displacement modes needed to analyze for other frequencies are calculated by a
linear interpolation of the five displacement modes calculated in advance. 3) As
the ground motion in cylindrical coordinate system, the displacement mode of the
n-th harmonic number are calculated by Fourier series expansion of the Rayleigh
wave displacement. 4) The phase velocities used in calculation are the measured
values. 5) The transient responses are calculated by the Fourier inverse
transform of the steady state response same way as in Ref.4. The calculated
circumferential component strain for the axisymmetric deformation mode is shown
in Fig.ll in comparison with the observed strain of axisymmetric circumferential
distribution component. Fig.ll indicates that the calculated and observed
strains agree reasonably well with each other. The calculated epicentral and up-
down component accelerations of the tank also agree well with the observed
values.

CONCLUSIONS

The following conclusions may be drawn from the results of this work.
(1) The axisymmetric mode (the harmonic number of finite Fourier approximation
n=0) or the sine mode (n=1l) which is caused by the ring deformation are
predominant in the circumferential distribution modes of the circumferential
component strains.
(2) SH body wave causes the sine mode. Rayleigh wave is one of the earthquake
ground motion components which causes the axisymmetric mode.

In the future, investigation of the following subjects should be continued:
(a) Earthquake response characteristics of the strains of tanks constructed in
soft ground. (b) The power of the surface wave components in strong earthquake
ground motions. (c) Response characteristics of tank strains caused by Love
waves and Body waves propagating obliquely from the bottom upward.
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