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SUMMARY

Inelastic rotation capacities of H-section, square hollow section and circu-
lar hollow section steel members subject to various types of loading are investi-
gated. By combining the simplified moment vs. rotation relationship with the
statistical critical stresses of stub-columns, the rotation capacities of those
members are predicted, and they are compared with test results. The width-to-
thickness ratio limitations of those sections are presented as the functions of
ductility requirements.

INTRODUCTION

In the plastic design, the first plastic hinge occurred in a frame must
rotate until the collapse mechanism of the frame is reached without losing its
moment capacity, and a greater inelastic rotation capacity is sometimes required
in the seismic design in areas of high seismicity. The rotation capacity of steel
members is severely impaired by the occurrence of local buckling of plate elements
of the constituent members. So, the limitations of width-to-thickness ratios of
various sections are prescribed in specifications of various countries, however
their theoretical or experimental backgrounds are not necessarily clear. Further-
more, for H-section members, width-to-thickness ratio limitation for flange and
for web are prescribed independently each other. Obviously, flange is restrained
by web and so vice versa web is restrained by flanges, and therefore such an inde-
pendent limitation is unreasonable.

In this paper, the inelastic rotation capacities of H-section, square hollow
section (SHS) and circular hollow section (CHS) steel members subject to bending
with and without axial thrust as determined by the local buckling are investi-
gated. And the rotation capacities of these members are predicted as the
functions of their width-to-thickness ratios. For H-section members, the inter-
action formulae of width-to-thickness ratio of flanges and that of web are given
according to any assigned inelastic rotation capacity. It is assumed that lateral
torsional buckling is restrained by a suitable mean. These predictions are
compared with test results.

ROTATION CAPACITY OF MEMBERS

It can be assumed that the local buckling will occur when the stress of
critical section of a member reaches a certain critical value even in the
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inelastic region. A simplified relationship between the rotation capacity and this
critical stress is derived in the following, in which the stress-strain relation-
ship of material is assumed to be rigid-plastic. Usually, the rotation capacity
is defined as

By 6p1

R=—7— -1="5—" (1)
by

in which 6y = ultimate rotation corresponding to the critical stress, and ey =
elastic rotation at the state when the moment of critical section reaches the full
plastic moment as illustrated in Fig.l. So, the numerator, Spl, in Eq.1l can be
calculated directly by using rigid-plastic relationship.

Assumptions The following assumptions are made; (1) shear deformation should be
negligible, and the influence of shear stress on the local buckling should also be
negligible. (2) sections can be replaced by the equivalent two-flange model as
shown in Fig.2, where the equivalency can be maintained by equating the full
plastic moment and the sectional area for both sections. Then the geometrical
relations between these two sections which satisfy the mentioned conditions are;

h _2+0.30/b I_(2+0.30/b)(2 + 0.1h/b)

for H-section: E;——-EfFBTI§B7B—, . 2 + 0.150/5)2 (2)
f SH.S' _].3_ _é_ ._I_ = 3_2_ (3)
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or ! m—=—, =
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in which hg = distance between geometrical centers of flanges of equivalent
section, and Ie = moment of inertia of equivalent section.

Moment-Curvature Relationship  For H-sections built-up by welding or by hot-
rolling and for welded SHS, 0 ~ € relationship of material is assumed to be rigid-
plastic flow-strain hardening as shown in Fig.3(a), and for cold formed SHS and
CHS, 0 - € relationship is assumed to be rigid-strain hardening as shown in Fig.3
(b) based on the experimental evidence. Using these stress-strain relationships,

- the moment-curvature relationships (M - ¢ relationships) of the equivalent two-
flange section are expressed as shown in Table 1.

Rotation Capacity When a rigid frame is subjected to horizontal loadings such as
seismic force or wind pressure, the constituent beams and columns undergo double
curvature bending which can be simulated by an assembly of the configurations of
cantilever beams. And the rotation capacity of cantilever beams can be compared
to those of centrally loaded beams which are often used as test specimens. Taking
this observation into consideration, rotation capacities of cantilever beams with
and without axial thrust as shown in Fig.4 are evaluated by integrating the curva-
ture, ¢, given in Table 1, as shown in Table 2. The rotation capacity can be
defined either by using the deflexion angle, ¥, or by using the slope, 8, as

¥p1 Op1 )
Ry =—— Rg = — . (see Fig.4) @

vy

BUCKLING STRENGTHS OF STUB COLUMNS
In the preceding chapter, the rotation capacities of steel members were ex-

pressed in the explicit forms as functions of the normalized critical stress,
§ = Ocy/Oy. The local buckling strength of H-section members can be determined
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using the slenderness parameters of flange, of = (E/g%)(t£/b)2, and that of web,
Oy = (E/w9) (ty /d)2, in which f9y = yield stress of flange and Uy = yield stress
of web. Using a total of 68 test data on stub-columns, the following linear re-
gression formula was obtained with the multiple correlation coefficient of 0.91
(Ref.1),

1.600 , 0.1535
+.—.——-————

- - ()

jL= 0.6003 +
s

For welded SHS, cold formed SHS and cold formed CHS, similar linear regression
formulae have been obtained and they are summarized in Table 3.

ROTATION CAPACITY AS DETERMINED BY WIDTH-TO-THICKNESS RATIOS

It can be reasonably assumed that the normalized critical stress, s, which
appears in expressions for rotation capacities shown in Table 2, may be repre-
sented by the s given by Eq.5 and in Table 3 for respective sectional shapes,
which are the local buckling stresses obtained from stub-column tests. Here upon,
it should be noted that webs in beams and beam-columns have stress gradient while
those of stub-columns are uniformly compressed. And this difference is taken into
account by introducing the following effective widths for calculating slenderness
parameters, Oy and o3

a +—5-o)d (6

for webs of H-section: de

for SHS: Be (L +p)B @)

wir ofe

in which A = area of H-section and Ay = area of H-section web.

Then the rotation capacities of members with their own width-to-thickness ratio
could be predicted by introducing s of Eq.5 and Table 3 into the relevant ones of
Table 2 depending on the sectional shapes and loading conditions.

The predictions thus obtained were compared with the available test results on
beams and beam-columns to show satisfactory agreement (Refs.1,2).

WIDTH-TO-THICKNESS LIMITATIONS

If the equations for the rotation capacity, R, given in Table 2 and the
equations for normalized critical stress, s, given by Eq.5 and in Table 3 are
combined for each corresponding case, and eliminate s from each set of simul-
taneous equations, the relations between width-to-thickness ratio and rotation
capacity are obtained. Then the width-to-thickness ratio limitations can be
specified according to the required rotation capacities. Taking the case of H-
section beams with moment gradient as an example, the width-to-thickness limi-
tation is expressed as following;

The rotation capacity was given in Table 2 as

1 _ E 2 h Est
Rg = _ [== = (s-1)* + = — (s-1
8= [Est Ie(s ) he ©y (s-1)1].

Solving for 1l/s ,

1 Est Ie he
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Equating this 1/Sy to 1/s of Eq.5,

b 52 de .
(tf) (tw) )
- 1 + = T 1 (8)

(— - 0.6003 )

- 0.6003) 571333 WOy  S¢

1,600 0y ¢ 5r

in which de =1/2(1 - A/Ay.p)d.

If Rg = 4, 2 and 0 are assigned corresponding to ductility class I, II and III of
Japanese specification respectively, and if E/Egy = 70 and €st/€y = 10 are assumed
for grade SM4l steel, Eq.8 is reduced as shown in Table 4.

In above formulae, fcy = woy = F in M,,, A/A,; = 2.5 and h/b = 4 were assumed.

The derivation of such formulae for SHS and CHS can be done more readily since
they have only one slenderness parameter.

CONCLUSION

Rotation capacities of steel beam and beam-column with various cross sections
were evaluated as functions of the normalized critical stress using a simplified
structural model. The relationships between the normalized critical stress and
width-to-thickness ratios of section elements were evaluated statistically using
test data on stub-columns the maximum stress of which were governed by local
buckling of section elements. Introducing this normalized critical stress into
the equations of rotation capacity, the relationships between the width-to-
thickness ratios of section elements and the rotation capacity were obtained.
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Table 1. M-¢ relationships

rigid-plastic flow-strain hardening rigid-strain hardening
Case I : ¢ < dgr 3 M= (1—;))!1p 0< ¢ <oy 35 M= (l—p)Mp + 2D¢
0> s-1 bst < 9 < bor 3 M = (1-p)Mp + 2D(¢-dst) critical moment ; My, = (s—p)Mp
2 critical moment ; Moy = (s-p)Mp (s-l)Mp
(s—l)M.P critical curvature ; ¢op = BT
critical curvature ; ¢o, = _2—D—+ dst
Case II : ¢ < der 3 M= (1-p)Mp Py .
<— ; M=
s=1 oMy 0<¢ <=5 M= (1p)M, +2D¢
2p>0
2 bst <9< dst + 7 oMy
=< ¢ < P M=M +
M= (1-p)Mp + 2D(p-dgp) | D - P S Per s M= Mp 4D
pM, critical moment ; M., = (s-p)Mp
25t + D < $ < ber s critical curvature ;

M = My + D(9-24g,) (s-p-Lt,
critical moment ; M,y = (s-p)M, ber =—p
critical curvature ;

(s-p-1)H,
ber = D + 2t
Case III : ¢<2¢st;M'Mp 0<¢ < ey s M=M + Do
p=20 20gt < ¢ < Por 3 M = MP + D(¢-2¢5t) critical moment ; M., = sMP
(beam) critical moment ; M.y = sMp (s-1)M,
critical curvature ; critical curvature ; fer = D
(s-1)Mp
ber = D + 205t
symbols p = 0y/0, = axial stress ratio, 0, = working axial stress, Oy = yield stress,
s = Ucr/cy = normalized critical stress, ¢ = €/hg = curvature, ¢gr = Egt/he = curvature

at streain hardening point, M = bending moment, Mp

= Aheoy

= full plastic moment, D =

Egtle = flexural stiffness in strain hardening region, Egy = strain hardening modulus.

Table 3. s - a relation
regression formula number of reference
samples
1 E t .,
welded —= 0,710 + 0.167/a — (=) 29 2
s Oy B .
SHS
1 E t 2
cold-formed —=0.778 + 0.13/a —_— (=) 45 3
s Oy B
1 E t
CHS | cold-formed | —= 0.777 + 1.18/a — (=) 37 4
s Oy D
Table 4. Width-to-thickness limitation for H-section beam
class I (Rg = 4) class II (Rg = 2) class III (Rg = 0)
b d b d ., b, d .,
(—)? (—)*? (—)? (7)) (=) (7))
te ty L L, & te Y ~
181 170 , 200 1289 229 1479
=== 52 1A ] =2 (—=)? ()2 (—=)?
T Or ) ‘¥ F [+ 5
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