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SUMMARY

The paper first presents the results of numerical analysis for the
convergence~divergence phenomena of the centroidal strain and the deterioration
of the carrying capacity of steel beam~columns with square hollow section, which
have the degrading stress-strain relation representing the effect of local
buckling. Then, it formulates the convergence condition of the centroidal
strain of a beam-column subjected to repeated uniaxial or biaxial bending,
presents the expression for the accumulation of the centroidal strain and the
deterioration of the bending moment carrying capacity, and finally propose an
evaluation. method of the seismic resistance capacity.

INTRODUCTION

The seismic resistance capacity of a steel frame or a member is in general
significantly affected by the local buckling. The investigations on the
behavior of H-shaped steel or box steel members and frames have been extensively
carried out, and the deformation capacity determined by the local buckling is
being clarified. When a thin-walled beam-column is subjected to alternately
repeated uniaxial or biaxial bending moment in which local buckling occurs, it
may reach a steady state and the hysteretic moment-curvature relation converges
after a certain number of the load cycles. On the other hand, the centroidal
strain may keep increasing with a gradual deteriotration of the bending moment
capacity in another beam-column. The boundary of these two behaviors may be
related to parameters such as axial force ratio, width- thickness ratio of the
plate element, and curvature amplitude, in a complex manner. Therefore, it is
needed to establish a method to evaluate the seismic resistance capacity of a
given member at the ultimate stage under the repeated loading condition,
including a member subjected to biaxial bending.

CYCLIC BEHAVIOR OF BEAM-COLUMNS WITH SQUARE HOLLOW SECTION

Model for the Analysis Cyclic behavior of a beam-column with a square hollow
section shown in Fig. 1 is analyzed to visualize the convergence-divergence
phenomena. The section is divided into a number of segments for the numerical
treatment, and dimensions given to the model are as follows: b = d = 48 mm, and
t = 3.2 mm. The model is subjected to a constant axial force ratio equal to 0.1
or 0.5, and alterpately repeated biaxial bending with non-dimensional curvature
amplitude ¢ = \/(<I>xd/€y)2 + (¢yb/€y)2'= 3 as shown in Fig. 2, where the yield
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strain €_ = 0.143%. Direction of the curvature vector & = 0° or 45°.

Theyhysteretic stress-strain relation considered in this study is shown in
Fig. 3, where s = 0/0_, e = €/€_, and degrading type non-linear plastic relation
for compressive loaang is derived by replacing a locally buckling plate by a
number of bars[l]. Non-dimensional stress functions f _(e) and g _(e)
representing the stress-strain relations in the plastic range are specified® in
terms of the strain of the i-th element as follows:

f(ei) for Ei <1
f (ei) = {_ _ - (ei) = l-l(e:.L -1)+1 (1)
P E(e;-e,) for &; > 1 P

z = /u\2E2 s . _/ _ _ _ 2.2
f(ei) 4A°E (ei)+1 + ZAE(ei), E(ei) = V-2(e; eB)€y (ei eB) €y (2)
where e =e, - 1; X =k(d/t); e. = maximum strain that the i-th element has

experien%ed ifi the past; U = strain hardening coefficient; e, = EB/E ;0 € =
critical strain at which the local buckling occurs; 2d/t = widgh—thickngss ratio
of the plate element; and k = a parameter introduced to compensate the error
involved in the formula derived by treating the plate buckling as the bar
buckling[1]. The value of e, is determined from the test results .of the 1local
‘buckling of tubular beam-columns[2]; e, =-2.778(t/2/d)?/€_. The value of k is
assumed to vary linearly along the side of the model seltion from O at the
corner(i=l) to 0.15 at the center(i=n/2). The hysteretic moment-curvature
relation is obtained by numerical computation considering the equilibrium of the
axial force and the bending moment.

Results of Numerical Analysis Results are shown in Fig. 4, where bending
moment m and centroidal strain e in the non-dimensional form are difined as
follows: m = VM?+M*/M ; e =€ /€ $ M, M = biaxial bending moments; M_ = full
plastic moment} &ndPe str8inYat ¥he fentroid. The plastic strain® at the
centroid converges to a certain value when the axial force ratio is small, but
otherwise it seems to diverge. Deterioration of the bending moment carrying
capacity 1is strongly related to the convergence of the centroidal strain. The
accumulation of the centroidal strain and the deterioration of the moment
capacity of the model with & = 45° are both smaller than those for the model
with & = 0°, when p = -0.1, and the strain accumulation is slower in the former
case. On the other hand, when p = -0.5, the centroidal strain does not converge
‘in either case, and the computation is terminated when the stress at the extreme
fiber in the tension side becomes zero.

o

CONVERGENCE CONDITION FOR THE CENTROIDAL STRAIN OF A BEAM-COLUMN

Model for the Analysis Consider a rectangular cross section subjected to
uniaxial bending about x-axis shown in Fig. 5, where the curvature § occurs as a
result of initial bending. Alternately repeated bending is subsequently applied
with the curvature amplitude ¢_ shown in Fig. 6. Figure 7 shows the curvature
history, in which the numerals denote the turning points of the repeated
loading. The curvature ¢" and the axial strain e" at the turning point_ n are
given in the non-dimensional form as follows: ¢" =3 + ¢_; " =e” + nd"; n =
y/d; ¢ = Q/Qo; ¢o = Ey/d; and tensile strain is taken positive.

Convergence Condition  Suppose the strain distribution in the cross section
changes from the one at the turning point n to the other at (n+l1/2), as shown by
solid and dashed lines in Fig. 8(a), respectively, with the assumption that the
centroidal strain at the point n is in the inelastic range in compression, i.e.,
e < -1. The curvature change is equal to 2¢_ and the strain increment at the
céntroid is Ale . If the non-dimensional stress-strain relation is given a
priori as showg in Fig. 3, the stress distribution in the section becomes as
shown in Fig. 8(b). The strain increment Aeo is given as a function of e P

0’

IV-146



and ¢". The condition for the convergence of the centroidal strain is derived
from the equilibrium of the axial force under the condition Aeo = 0, as follows:

e+ (50 )

eg-f(e“)

1 o o r
[ f(e)de + (e)de] - p =0 (3)
26 - 0) Jeg-(5—¢r) o [eg-fceg> e

where f(e) and g(e) are functions expressing the non-dimensional stress-strain
relations in the compression and the tension sides, respectively.

Accumulated Strain If the solution of Eq.(3) for e’ is not found, the
centroidal strain will not converge. In this case, a ceftain amount of strain
is accumulated in the process of loading from the point n to (n+l/2). This
strain increment is obtained again from the consideration of the equilibrium of
the axial force with a certain approximation, as follows:

(B ) en+1/2

e2+1/2 _ eg - _[f g Tg(e)de + { §+l/2 f(e)de -~ 2p(5~¢r)]/[1—f(eg)]
e e —($—¢ )
o o r (4)

Formulation for Discrete Element Model Subjected to Biaxial Bending The cross
section is divided into a number of discrete elements for the convenience in the
numerical computation. Equations (3) and (4) can be modified for such a
multi-element model as shown in Fig. 9 subjected to biaxial bending with the
curvature history shown in Fig. 10, as follows:

mc n mt n
.E f(ei)ai + 'Z g(ei)ai -p=0 (5)
i=1 i=1
n+l/2 n_  yce, n+l/2 St . n
e, -e = —[iilf(ei dag + iilg(ei)ai - pl/a, (6)
The non-dimensional bending moment about x-axis is derived as follows:
m m
mn+l/2 = - Zcf(eg+l/2)a.r.sine. + Etg(e?)a.r.sine. + (en+l/2 - eMa r sinb
X . i ivi i’ 77101 i o o’"ee e
i=1 i=1 (7

where @e = taﬁi[(5coéB—¢rcos€)/(5sin8—¢rsin€)]; a = C[l—f(eﬁ)]/Z/D/(5—¢r); p

e

= cosee for 9e<45°, and sinee for 9e§45°; r, = [{1—f(e2)}/2/(5~¢r)]; m, =

Mx/(Aoyd); a; = Ai/A; A = area of the i-th element; A = total area; C = ratio

of web area to the total area of the original section; and m_, m_ = number of
elements in compression, or in tension, respectively. The eXpression for the
bending moment about y-axis is obtained by changing sin9i to cos9i in Eq.(7).

Evaluation of Seismic Resistance Capacity . Seismic resistance capacity of a
thin-walled steel beam—column may be evaluated from three points: the
convergence of the centroidal strain, the bending moment carrying capacity for
an assumed strain level, and the rate of the strain accumulation and the rate of
the deterioration of the bending moment carrying capacity. Seismic resistance
capacity is evaluated in two steps using Egqs.(5), (6) and (7):

1. If the solution of Eq.(5) for e, is found, say e, check for

#* *
lel <e;  me) >m, (8)
* o n-1/2
2. If e is not found within e _, assume e = e_ _, and check for
o i cr o cr RS
n+l/2 n+l/2 +1/2 T
m > Bep? Ys < Yscr’ YE < Ymcr (9
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n+l/2 - en+1/2/en

where Ys and Ym are the factors defined as follows: Ys o 0~ 1;
Y$+1/2 =1~ mn+1/2/mn; m = mez + my2 for the biaxial bending. The values of

€cpr Moy YScr and Ymcr are specified a priori as design criteria.
Numerical Examples Square hollow section is approximated by a 3-element model
as shown in Fig. 11 in which m-m and m'-m' are bending axes, and the relations
between the axial force ratio and the converged centroidal strain or the
width-thickness ratio are numerically analysed based on the criteria for the
seismic resistance capacity given above. The curvature history assigned is as
shown in Fig. 3, and it is assumed that € = 0.143%Z, 4 = 0.02 and k is
constantly 0.15 for all elements. Non-dimensional area a. and angle 8 of the
model are determined so that the full plastic moments about x- and y-axes of the
square hollow section coincide with those of the 3-element model.

Figure 12 shows the relation between the axial force ratio p and the
width-thickness ratio 2d/t. Point on the solid line indicates the maximum value
of p for a given value of 2d/t when the centroidal strain just converges with m
= 0. Point on the dashed line indicates the maximum value of p for a given
value of 2d/t when Y_becomes equal to 0.05 with e, =epgSore = -20. Chain
line shows the li%iting value of p derived £Pom ghe con81tlon that the
centroidal strain converges within e,. Figure 13 shows the relations between p
and the centroidal strain e . Point on the solid line indicates the maximum
value of p when the centroidal strain converges to a given value of e , while
point on the dashed line indicates the maximum value of p for a given value of
e, when Yo =0.05. Chain line shows the values of e, for 2d/t equal to 10 and 50,
assigned "in the stress-strain relation, Eq.(2). The absolute value of p
determined from the condition Y_ = 0.05 is larger than that from the convergence
condition of the centroidal stfain. The flat portion appearing at e = on
the solid line for 2d/t = 10 indicates that the value of the converged sgraln
changes significantly depending on whether or not the element at the centroid
buckles locally. The moment capacity becomes nearly zero in the vicinity of the
intersection of the solid and the dashed lines.

CONCLUDING REMARKS

In order to ascertain the ultimate safety against earthquakes of
thin-walled beam-columns which show degrading behavior due to local buckling, it
is needed to establish a quantitative evaluation method and proper criteria for
the seismic resistance capacity, and the method and the criteria are proposed in
this paper which are based on the convergence condition for the centroidal
strain and indicators Y_ and Y representing the rate of strain accumulation and
the rate of moment capacity deterioration, respectively. The proposed method
and criteria involve axial force ratio, width-thickness ratio of plate element,
direction of the curvature vector, curvature amplitude, yield strain and
strain-hardening coefficient as parameters, among which effects of first three
parameters are mainly investigated. It may be deduced from Eqs.(3) and (4) that
the amount of curvature amplitude does not affect on the convergence condition
at large strain level although it has significant influence on the strain
accumulation. Equations (1) and (2) indicate that the stress deterioration due
to local buckling becomes large with the increase in the yield strain € _, which
means severer reduction of the resistance capacity occurs in beam-columns made
of high-strength steel. The increase in strain-hardening coefficient makes the
centroidal strain converge earlier.

If the non-linear part of the stress-strain relation is approximated by
piecewise linear relation, the convergence condition and the indicators for the
seismic resistance may be expressed in closed forms, as the formula for the
idealized sandwich section shown in the Abstract.
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