Proceedings of Ninth World Conference on Earthquake Engineering
August 2-9, 1988, Tokyo-Kyoto, JAPAN (VolIV)

6-3-2

DETAILED MODELING OF THE CYCLIC RESPONSE OF
STRUCTURAL STEEL FRAME SUBASSEMBLAGES

Donald W. WHITE1 and William MCGUIRE2

1School of Civil Engineering, Purdue University,

West Lafayette, IN, USA

Department of Structural Engineering, Cornell University,
Ithaca, NY, USA

SUMMARY

This paper presents the authors” experiences with numerical simulation
of cyclic response within steel frame subassemblages. Shell finite elements
and a bounding surface plasticity model are employed to follow detailed
local behavior including the spread of plasticity, cross-section distortion,
and the interaction of local and overall instabilities. First, the most
significant aspects of the cyclic stress—strain behavior of structural steel
are discussed. Both uniaxial and multi-dimensional effects are considered.
The implications of 1linear flow theory for the modeling of inelastic
stability are addressed. Finally, results from the cyclic analysis of a
simple cantilever beam are reviewed.

INTRODUCTION

Due to the rapid growth of computing power available to engineering
researchers, refined numerical models have become an important companion to
experimental testing for the study of structural behavior. Numerical
simulations can be employed in the design of experimental tests, in the
performance of parametric studies, and in the elucidation of complex three-
dimensional behavior that may be difficult and/or costly to observe
experimentally. This paper reports the results from research conducted at
Cornell University on the finite element modeling of local behavior in steel
frames. The focus here 1is on several phenomena that may need to be
considered for accurate prediction of the structural response in general,
and on the numerical predictions for a few simple test cases.

STRESS—STRAIN BEHAVIOR

The cyclic stress—strain response of structural steel is quite complex,
especially if the 1loading at a material point follows a non-proportional
path involving significant interaction between the different components of
stress and strain. Although the predominant strains in most frame members
are uniaxial, such interaction effects may be important at member locations
where 1local buckles begin to form, or in structural components such as
beam-to-column joints and the shear links of an eccentrically braced frame.
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The strain history shown in Fig. 1 can be used to 1illustrate several
stress—strain phenomena that merit consideration in the modeling of cyclic
structural behavior. This history is the first part of a strain pattern
applied in an axial-torsion test of A36 steel tubing, the results of which
are reported in Ref 1. The test is divided into three parts for purposes of
discussion. Part T corresponds to simple monotonic uniaxial extension of
the tube specimen. Part II involves uniaxial cycling between fixed strain
limits of 0.008 in./in. Finally Part III involves combined shear and axial
cycling at 90 degrees out-of-phase. This path corresponds to cycling at a
constant effective strain of 0.008 in./in., or to straining in a circular
path of radius 0.008 in./in. in the normalized plane e/eyi—Y/V/§Yyi.

Figs. 2 and 3 demonstrate the predictions of a specialized bounding
surface plasticity model for this strain history. In these figures, the
numerical results are indicated by the solid 1lines and the open circles
indicate the peaks of the curves obtained by experiment. The predicted
trends in the response are identical to those of the experiment, and in
general, the experimental and numerical curves are a close match. The
reader is referred to Ref. 2 for a detailed description of the plasticity
relationships and for further comparisons of experimental and numerical
results.

Consider the axial stress-strain curves for parts I and II of the
strain history (Fig. 2). Two cyclic stress—strain phenomena are evident from
these curves-—the Bauschinger effect and cyclic hardening. The Bauschinger
effect 1is related to a sharp decrease in the size of the yield surface from
that of the virgin response (i.e., a decrease in the size of the elastic
region for the cyclic curves). Cyclic hardening is evidenced by the gradual
increase in the peak stresses achieved in each of the half-cycles. For
cycling between fixed strain 1limits as performed in Fig. 2, the stress-—
strain curves eventually harden to a stable 1loop the size of which is
dependent on the magnitude of the plastic straining.

The response curves for part III of the strain history illustrate an
important nonproportional straining effect (see Fig. 3). Although the
maximum effective strain for part III is the same as that for parts I and
II, the material exhibits additional hardening due to the nonproportional
straining path. The peak axial stress increases by approximately 23 percent
from the end of part II to the end of part III. It can be concluded from
the results shown in Figs.-2 and 3 that, for accurate modelling of the
multi-dimensional cyclic response of structural steel, it is important not
only to consider the magnitude or the extent of the plastic straining, but
also it is necessary to consider the direction of the straining path.

INELASTIC BUCKLING PARADOX

The bounding surface plasticity model employed in this work is based on
linear flow theory. The term "linear flow theory" implies a smooth yield
surface, normality of the plastic strain rate with respect to the yield
surface, and linear dependence of the strain rate magnitude on the magnitude
of the stress rate. Unfortunately, for inelastically loaded plates, buckling
predictions using linear flow theory can grossly over—estimate
experimentally observed collapse loads. Correspondingly, for the case of
monotonic loading, predictions of collapse using a deformation theory of
plasticity are generally quite good even though it is widely recognized
that, physically, flow theory is more sound than deformation theory [see
Ref. 2]. This problem, termed the "inelastic buckling paradox" has been
recognized in the mechanics 1literature for more than 30 years, and it is
discussed in more detail in Refs. 2 and 3.
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Fig. 4 illustrates typical analysis results for a simply supported
plate with one free edge. The analytical buckling solution using
deformation theory is shown by the dashed line in the figure. Several plots
of axial load versus midspan deflection, obtained from incremental-iterative
finite element analysis, are shown by the solid lines. The different plots
correspond to different magnitudes of the initial imperfection w_/t at the
midspan of the plate. The initial imperfections vary as a sine wave along
the length of the plate.

The imperfection sensitivity of the finite element results, which is
indicated by the differences between the three solid curves in the figure,
is a product of the linear flow theory assumptions of the plasticity model.
The experimental collapse of the plate is expected to be approximately equal
to the deformation theory solution, regardless of the magnitude of the
imperfections. Although the finite element solution for an imperfection of
w°/t=0.1 predicts an average stress at collapse which is approximately equal
to the deformation theory value, this imperfection is probably too large to
be considered as a realistic value. The imperfection wo/t=0.01 might be
considered to be realistic and unavoidable, but the maximum average stress
predicted by use of this imperfection is 14.3 percent greater than the
deformation theory value. The maximum load obtained for the zero
imperfection case is 39.7 percent greater than the deformation theory
solution.

Fig. 5 provides an explanation for the false imperfection sensitivity
exhibited by the above finite element solutions. 1In the case of the plate
shown in Fig. 4, the deformations change from axial to primarily torsion as
the collapse 1load 1is approached. Fig. 5 is a plot of the tangent shear
modulus for a tube specimen that has been axially pre-strained into the
strain-hardening region, and then subjected to a torque while the axial load
is held constant. It can be observed from this plot that flow theory
overestimates the tangent shear stiffness of the material for small shear
strains. Since the shear strains due to twisting are small at the onset of
inelastic instability in the plate, this explains why the strength of the
plate is overpredicted. This problem possibly can be alleviated by
considering yield surface corner effects in the plasticity model, i.e, by
use of a nonlinear flow theory.

CYCLIC RESULTS FOR A SIMPLE CANTILEVER BEAM

The structure shown in Fig. 6 is an idealization of a cantilever beam
employed 1in one of the cyclic experimental tests reported by Popov and
Stephen (see Ref. 4). In the current study, the displacement history shown
in Fig. 7 1is applied to the end of the beam. This is the same as the
history applied in the experimental test, except that (1) initial elastic
cycles are not applied, and (2) only one cycle is applied at each
displacement amplitude. Unfortunately, divergence is obtained as
significant yielding and local deformations begin to develop in the fifth
half-cycle. However, the results obtained are sufficient for discussion of
several important aspects of the finite element modelling.

The load-deflection curves predicted by the finite element analysis are
shown in Fig. 8. These curves are similar to those obtained in the
experiment, the peak stresses of the numerical simulation being slightly
larger. The Bauschinger effect and some cyclic hardening are evident, but
nonproportional cyclic plasticity effects do not appear to be important in
this case (i.e., the material straining is predominantly uniaxial). The
local deformations at the fixed end of the beam are shown for the end of the
third and fourth half-cycles in Figs. 9 and 10.
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The most significant observations from this study are: (1) 1local
distortion of the compression flange is evident at the support even in the
first half-cycle, but it is visible at that time only when the deformations
are highly magnified, (2) the local buckles straighten when the direction of
loading is reversed and the flange is placed in tension, (3) 1local
distortion in the flanges at the support becomes more and more prominent in
each half-cycle, and (4) although initial imperfections are specified in the
flanges to help initiate the local deformations, the local distortions at
the support do not resemble the initial imperfections.

CONCLUDING REMARKS

The results presented in this paper are from several preliminary test
cases. Further | work remains to investigate the significance of the
phenomena discussed for more complex structural components such as beam-to-
column joints and the shear 1links of an eccentrically braced frame. The
imperfection sensitivity of the results should be addressed for the simple
cantilever problem studied here. For this and a number of other cases, it is
possible that the predicted imperfection sensitivity is small and that a
plasticity model based on 1linear flow theory is adequate to follow the
behavior. This work is currently being pursued by the authors.
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