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SUMMARY

To calculate the hysteretic restoring force characteristics of steel
members under seismic load, a mathematical structural model is proposed.
Although the model is simple and has only three degrees of freedom, it is
confirmed that the inelastic and hysteretic behavior of any kind of steel
members can be analyzed easily. Based on the presented model seismic response
and dynamic collapse analyses of braced steel frames have been carried out and
it is pointed out that the hysteretic behavior of all members composing the
frame must be calculated in detail to execute reliable analysis and the proposed
model is useful for that kind of analysis, which usually requires a large amount
of calculation, because of the simplicity and the accuracy of the method.

INTRODUCTION

To clarify the response behavior or the collapse behavior of building
frames under strong ground motions the restoring force characteristics of frame
must be analyzed accurately enough because they dominate the response behavior.
Since the restoring force of a building frame is generated from the restoring
forces of all members which compose the frame. From this reason the behavior
of all members must be analyzed strictly in the reliable structural analysis of
building frames.

To analyze the detailed inelastic behavior of steel members under selsmlc
load, the following conditions, which change complicatedly according to the
hysteretic behavior, must be satisfied.

- The hysteretic stress-strain relation.
- The residual and accumulated plastic deformations.
- The plastic zone over the cross section and along the axis.

To execute the above-mentioned analysis, the finite element method (FEM) is
the best and most widely used analysis method. However, FEM requires a large
number of elements and a large amount of calculation when it is applied to the
analysis of tall buildings. In seismic response analysis iteration process is
inevitable because of the non-reversal property of stress-strain relation.

When the number of freedoms to be solved is fairly large it is very difficult or
in some cases it is impossible to converge the iteration process to the accurate
state. For this reason we must try in the numerical analysis to decrease the "~
number of freedoms to be solved and the amount of calculation as much as a
possible. i

The plastic hinge method has been proposed as a simple analysis method of

steel members to decrease the amount of calculation.(Refs.l-5) By this method
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it is difficult to calculate the effect of the plastic zone strictly which
changes every moment over the cross section and along the axis of each member.
However, since the deflection of member which generates the P-delta effect is
related to the plastic zone along the member axis, in the analysis of inelastic
hysteretic behavior of steel members the plastic zone is an important factor to
be calculated.

Another possibility has been presented to decrease the amount of
calculation of FEM by treating the elastic region of each member as one
elements.(Ref.6) By this way the number of element becomes smaller than that
of fixed element method. But this method also requires a large amount of
calculation to analyze the collapse behavior of tall building frame in which
plastic region spreads widely and needs many elements.

In this paper a mathematical structural model is presented which is simple
but useful in analyzing the behavior of steel members relatively accurately and
can be easily applied to the structural analysis of tall buildings.(Ref.7)

MATHEMATICAL MODEL

Assumptions The structural model presented in this study is derived under the
following conditions.

1) The structural model of a steel member is considered with respect to the
cantilever member which is subjected to horizontal load (Fx), vertical load (Fz)
and bending moment (Fr) at the free end as shown in Fig.l.

2) The section of the steel member is replaced by a two-

flange section. The area and the moment inertia of the
replaced section are equal to those of the original section
in the elastic range. When plastic strain is generated the

section is replaced by "the equivalent two-flange section"
explained in the next paragraph.

3) The normal stress of the concentrated sections
distributes linearly along the axis of the member.

4) The incremental strain is given by Eq.(1).

E=W'+(U")(U")-U""'X (1)
in which E : the normal strain at Z-section, ' : the
differentiation with respect to Z, U,W : the displacements
at Z-section. The dots mean the increments and the
notations in this equation are explained in Fig.l. Fig.l Structural model

5) The incremental plastic strains (Epa,Epb) distribute
as shown by Eq.(2).

Epa=Ra(1-Z/Za)Ee at X=d, Z=(0,Za)

Epb=Rb(1-Z/Zb)Ee at X=-d, Z=(0,Zb) (2)
in which Ra,Rb : the ratio of the incremental plastic strain
to the incremental elastic strain, Za,Zb : the length of the
plastic zone along the axis, Ee : the incremental elastic
strain, d : the half of the distance between the concentrated
sections. The distribution of the incremental strains and
the notations are explained in Fig.2. The values of Ra,Rb
are decided according to the hysteretic stress-strain
relation at the fixed end. The stress-strain relation is
expressed by the tri-linear model as shown in Fig.3.

6) The shear deformation is neglected.

The equivalent two-flange section Fig.4 shows the moment-
axial force (M-N) interaction of the section of a steel member

which is normalized by the ultimate stress (Mu,Nu). The Fig.2

relation is generally expressed by the curved line as shown by Strain distribution
the real line in the figure. But the M-N relation of the in "equivalent two-
two-flange section explained in the assumption 2) is flange section"
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given by the straight line as shown by the dashed line
in Fig.4. In this case the error is too large to
analyze bracing members which are subjected to high
tensile axial load. To exclude this error in this
study the concentrated areas (Aa,Ab) of the replaced
equivalent two-flange section are decided under the
condition to minimize the sum of the difference
between the two curves over the yield axial force
(Ny) which is shown by the shaded area in Fig.4.
Although the values of Aa,Ab change according to

the sectional shape of member, to simplify the
calculation Aa,Ab are given by the representative
values shown in Eq.(3).

Aa=0.84, Ab=0.2A (3)
where Aa : the sectional area of the higher stress
flange, Ab : the sectional area of the other
flange, A : the sectional area of the original
section.

E/Ey

Fig.3 Hysteretic stress-
strain relation

The plastic zone length  Since the loads of Fig.4 M-N interaction
the model works only at the free end, it is

reasonable to assume that the normal stress distributes linearly along the axis
of the member. But the criteria of elastic stress may not distribute linearly
along the axis according to the hysteretic plastic deformation. To simplify
the calculation of Za,Zb the critical stress of elastic range is also assumed to
distribute linearly. Under this condition the plastic zone length (Za or Zb)
is easily obtained as the intersection point of the two linear function of Z.

Incremental equation of load-deformation relation The incremental virtual work
equation of the model which is shown in Fig.l and explained in the assumption 1)
is given by Eq.(4).

[F]' [%]: JI(S)(E)dzdA/ (PyL) (&)
in which, [F]=[Fx/Py Fz/Py Fr/(PyL)]', [D]=[Dx/L Dz/L Dr]', Py : the yield axial
force, S : the normal stress and SdZ,/dA : the integration along Z-axis and over
the sectional area respectively. The notations in Eq.(4) are explained in
Fig.l. .

The incremental strain E in Eq.(4) is the sum of the elastic components and
the plastic components as shown in Eq.(5).

E=Ee+Epa+Epb (5)
where Ee is the incremental elastic strain which is generated if the member
would be perfectly elastic. Since the stress of the concentrated sections has

been assumed to distribute linearly the distribution of Ee is also linear along
the axis of member. Epa and pr are the incremental plastic strains in the
concentrated sections respectively as explained in Fig.2 whose distribution is
given by Eq.(2) according to the lgw of hysteretic stress strain relation.shown
in Fig.3. From these conditions E can be expressed by the function of [D].
By substituting E expressed by [D] into Eq.(4) we can get the equilibrium
equation of the model. The rate equation of it is shown by Eq.(6) and it gives
the relation between the incremental end-deformations [D] and the incremental
end-forces [F].

(F]=[K][D] (6)
In this equation [K] is the stiffness matrix which contains Ra,Rb to show the
characteristics of stress-strain relation and Za,Zb to express the plastic zone.
In the matrix [K] the integration of deformation along the axis are also
included to give P-delta effect. Since the deformation is given by power
function of Z which represents the axial coordinate, the integrations along the
axis are easily carried out and expressed by the closed-form functions of the
end-displacements and rotation which make the calculation by this proposed
method very simple.
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Application of the presented model to frame analysis The presented model can
be easily applied to frame analysis. When every steel member of building
frames is divided into the two parts along the axis as shown in Fig.5, each part
can be considered as a cantilever member whose loading condition is the same as
shown in Fig.l and the load-deformation relation is given by Eq.(6). This
replacement may be equally applied to columns, beams and braces. Accordingly
the relationships between the end-loads and the end-deformations of every steel
member can be obtained by coupling the two cantilever members under the
condition of continuity at the center along the axis of the member.

Comparison of the presented method with FEM Hysteretic behavior of a beam-
column and a brace member have been calculated by the presented method and FEM

to examine the usefulness of the presented method. The section of the members
are H-200x200x8x12 and the slenderness ratio of the column and the brace member
are 40 and 80 respectively. The members are loaded to deform about the strong
axis. The loading condition is explained in Fig.6. In FEM analysis the cross

section of the member is divided into fifty elements and along the axis the
lower half and the upper half of the member are also divided into six elements
and three elements respectively. The numerical results of hysteretic restoring
forces are shown in Fig.6. We can say there is little difference between the
two calculations. Concerning about the computing time the presented method
takes only about two percent of the time to be carried out by FEM.

>

1

SEISMIC RESPONSE ANALYSIS 71 %==

Calculated frames and conditions of analysis 10-story Ri
3-bay frames and 15-story 3-bay frame, named Frame-1,

Frame-2 and Frame-3 as shown in Fig.7, have been

calculated under strong ground motion to examine the

usefulness of the presented analysis method and also to

know the relation between the restoring force of a frame

_———r—'—

and those of composing members. Frame-1 and Frame-3 are \
designed based on the Japanese aseismic design code and

the horizontal strength and the stiffness of every story

are agree with the required criteria of the code. To Fig.8

simulate the collapse behavior, Frame-2 is particularly Dynamic analysis model

designed under the half of the seismic load of Frame-1l.

The mass of frame is assumed to be concentrated at the rigid beam-column
connections and the equation of motion is expressed with respect to the
displacements (Xi,Zi) and the rotation (Ri) of the connections as shown in
Fig.8. The ground motion is the N-S component of the well-known El Centro 1940
record amplified by three times to simulate the catastrophic behavior. The
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Fig.9 Time histories of displacement response
calculation of the seismic response has been carried out TIME
by the use of the linear-~acceleration method under the 0 2 4
condition that the errors of the energy balance equation (sec)
(Ref.6) does not exceed 0.5 percent of the input energy. (Frame-2)

Numerical results In Figs.9-13 calculated results are shown. Fig.9 is the
time histories of the horizontal displacements which shows the collapse behavior
of frames by accumulating the plastic drift gradually. The deflected shapes of
the frames are expressed in Fig.10 in real proportional scale. From these
figures we can say the inelastic hysteretic behavior and the collapse behavior
of the frames are analyzed fairly well. Fig.ll and Fig.l12 are the hysteretic
restoring force of columns and a brace of first story in Frame-1. The
horizontal restoring forces of the two columns are remarkably complicated
according to the variable axial force and quite different between them although
the two columns have been subjected to nearly the same hysteretic horizontal
displacement.

The horizontal restoring force of a story is composed of the horizontal
restoring forces of columns and braces. As an example the horizontal restoring
force of the first story of Frame-l1 is shown in Fig.13 which is also
complicated. To simplify the seismic response of frames the multi-degree of
freedom system (MDOF) whose mass of a story is concentrated in
the floor is widely used. But, since the horizontal restoring
force of frame is not simple as shown in Fig.1l3 we can not
strictly represent it by a simple model. To get the accurate
restoring force it is necessary to calculate the hysteretic
behaviors of all members of the frame.
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CONCLUSIONS

Since the restoring force characteristics of braced steel frame are too
complicated to express it by a simple model, it is necessary that the behaviors
of all members composing the frame are calculated in detail to carry out
reliable analysis. The proposed analysis method is useful to analyze the
seismic response or the dynamic collapse behavior of steel building frame based
on the above-mentioned restoring force because of the simplicity and the
accuracy of the method.
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