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SUMMARY

A lot of studies on the ductility of reinforced concrete columns have been
performed by many researchers. Most of their attempts were the statistical studies
based on test results, and some of the researchers investigated it theoretically
by assuming a certain limit of either compressive or tension strain at the
critical section. In this paper, the deformation capacity, in case of columns
which fail due to the crush of concrete after flexural yielding, is defined from
the point of view of energy absorption of columns. And then the equations which
give the strains in the critical section at the deformation capacity are induced
by the flexural theory. Finally, an equation which gives the drift angle of
columns at their deformation capacity is derived from a simplified truss model.

INTRODUCTION

The deformation capacity is one of most important factors to evaluate seismic
performance of structural members. However, a reasonable definition of it has not
been proposed yet. The deformation at the deterioration in strength of 80% of the
ultimate load is often taken as the deformation capacity of the test results, but
the reason for it is not clear. Also, some researchers discussed a critical strain
in the extreme compressive concrete fiber or a critical curvature at the critical
section. A few researches showed that there was a critical tension strain in steel
bars at the critical section (Ref. 1 and Ref. 2), and then presented the strain
and curvature in the critical section at that moment. However their meaning on the
deformation capacity of members was not explained well because of the difficulty
in estimation of the drift of members from the strain and curvature at the
critical section. This paper, based on the test results of columns (Ref. 3), shows
that there is a critical point in the vertical displacement at tension side in
hinge region, and that the mechanism of energy absorption in a whole column
changed dramatically at the critical point, referred to as '"stable limit". The
drift angle of columns at this stable limit is calculated based on the strains and
curvature in the critical section, and a simplified truss model which represents
the deformation mechanism after flexural yielding of tension steel bars.

ENERGY ABSORPTION IN MEMBERS AND STRAINS IN A CRITICAL SECTION
AT THE STABLE LIMIT

Energy Absorption in Members The amount of extension of tensile longitudinal
reinforcing bars in the hinge region obtained from the tests of columns(Ref.3)
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are shown in Fig. 1. There is a strong correlation between the drift angle and the

amount of the extemsion. Figure 2 shows the amount of work done by external forces

and the strain energy absorbed in longitudinal tensile steel bars anc‘l the others.

The each amount of energy absorbed increase as long as the tensile bars are

elongating. However, after the limit of extension of temsile bars, the mechanism

of energy absorption in the columns undergoes a change as fol%ows:

1) The amount of strain energy in tensile bars starts decreasing.

2) The amount of work donme by the axial load starts increasing rapidly because of
the shortening of the columns in the axial direction. )

3) The amount of strain energy absorbed in the whole column, especially that in
concrete starts increasing rapidly.

4) Comsequently, the lateral load carrying capacity significantly starts
decreasing (see Fig. 3).

From the facts mentioned above, the limit of the extension of the tensile
bars in columns is considered to be the critical point for deformation capacity.
This limit is hereafter referred to as "stable limit" in this paper.

Strains in a Critical Section at the Stable Limit Figure 4 shows that the strain
of tensile bars in the critical section reaches the maximum at the stable limit.
Assuming that the plane section before bending remains plane after bending, the
value of the maximum strain in the tensile bars is obtained from the following two
conditions, in case of the section shown in Fig. 5 under a constant axial load.

1) Equilibrium requirement of forces in the axial direction

2) deo (1)

de . =0 where, ¢ o= strain in tensile bar, and
€c = concrete strain in the extreme compressive fiber.

The solution under the assumption of the perfect elasto-plastic relation for
steel is derived as follows (see Fig. 6). The detail of the solution is shown in
Ref. 1 and 2, and the solution taking account of strain hardening in both tension
and compression bars is shown in Ref. 3.

The maximum strain in tensile bars at the stable limit

€ o.max =(83-81)/(5:45z) * €cicr (2)

The curvature at the stable limit Os1=(5245)/(5452) * e cn/ (d(D) (3)
The depth of neutral axis at the stable limit x,,=(5,45.)/(5:4582) - d., (4)

where, Sl’ S, and S, = the areas shown in Fig. 6,
¢ ¢, cx= the ConcTete strain in the extreme compressive fiber at the stable limit,
and d,= ratio of the distance from the extreme compressive fiber to
tensile bars to depth of column.

If the stress—strain curve for concrete is simplified as three lines shown in
Fig. 7, the each ratio of areas underlined in Egs. (2), (3), and (4) will be
expressed by merely the ratio of the axial stress (7o), and Equations (2), (3),
and (4) will be rewritten by Egs. (5), (6), and (7).

so.m\x=(1/770 -1)/2 ecoer (5)
Os1=(1/70+1)/2- €c.cx /D (6)
Xm=2/(1/n0+1) (7)

where, %e¢= ratio of axtial stress (N/bD) to compressive strength of confined
concrete (fc").

If the value of 7o is same regardless of fc", Xn1 at the stable limit is
independent of fc", and co.msx and ®s, depend on only 7¢. It is generally known that
it is effective in ductility to design axial loads in low level and to improve
decrease in strength after the maximum load on the stress—strain curve for
concrete by lateral confinement, and that the greater ®s. and ¢ o, uax are, the better
the deformation capacity is, and also the smaller Xn1 is, the better it is.
Equations (5) ~ (7) and Figs. 6 and 7 clearly explain the effects of 7o and the
stress-strain curve for concrete on ductility.
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A TRUSS MODEL REPRESENTING DEFORMATION MECHANISM

Deformation Mechanism After Flexural Yielding Typical crack pattern and
distribution of strain on the both side ends along the height of a column which
behaves in a ductile mode after flexural yielding are shown in Fig. 8. The
inclined flexural shear cracks in hinge region tend to concentrate to the center
of compressive zone at the base. In this paper, considering this crack patterns, a
simplified truss model shown in Fig. 9, consisting of a inelastic concrete regiom,
rigid members, and a non-prismatic member expressing the tensile bars in the hinge
region (Ref. 4), is used to explain the deformation mechanism of columns. (Exactly
speaking, a truss model in Fig. 10 may be more suitable for the deformation
mechanism. However, the model shown in Fig. 9 is applicable enough for it in the
large deformation range.) The sectional area at each height in the non-prismatic
member is determined by the stress at each height of tensile bars obtained from
equilibrium of forces on the inclined crack surface developing from its height.
The deformation mechanism in Fig. 9 gives Eq. (8).

Drift angle R=v./ { (di-xa1) D} (8
where, v= vertical displacement at the top at tension side v=h{, e d»
¢ 7= strain at height of (0=7s1) in the tensile barsen=1fs (¢7)
= height of columm,
s= function which expresses the stress—strain relation for steel,
Xn1D= depth of neutral axis in the critical section,
d:D= distance from extreme compression fiber to the tensile bars, and
o 7= stress in the tensile bar corresponding toep .

b
s

The drift angle obtained by substituting v and of the test results into
Eq. (8) are shown in Fig. 11 compared with that calculated by horizontal
displacements.

Calculating of Drift Angle at Stable Limit To obtain the stress in a tensile
bar, the equilibritm of forces is simplified as Fig. 12, on the assumptions that
very little shear can be transferred by either interlock or dowel action and that
the inclined shear cracks concentrate to the center of the compressive zone at
base. Also assuming that all of the shear reinforcement and all of the central
longitudinal reinforcement, if there is any, in the radiate crack zone have been
yielding or nearly yielding, Equations (9) and (10) may be obtained.

TN = Two (9)
Qu =bhpu- o uyn (10)
where, Tyo s Tw = the sum of forces of central longitudinal reinforcement

at the base and at the inclined crack surface,

pw = ratio of the area of shear reinforcement to the area of
longitudinal cross section, and

cwy = yield strength of shear reinforcement.

Therefore, from the equilibrium requirement for the free body, Equations (11)
and (12) are obtained.

Tn=T, - bthu Uuy/ {Q2d:-xa1)D} - 77z (ll)

en=Tn/ (G t)=00 - ouy /Q@li-xa) * W/DZ+ (pu/pe ) n? (12)

where, T, , T» = the sum of forces of tensile bars at the base and at the
height of 7, and
pt = ratio of the area of tensile bars to the area of
longitudinal cross section.

Using the assumed stress-strain relation for steel shown in Fig. 13, the

distribution of strain in the non-prismatic tensile bar is expressed as follows.
(So far as the large deformation range is concerned, only plastic strain is taken
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into account in this paper, as there is little effect of elastic strain on the
whole deformation.)

en=Cc0- 77%06y) /EBsntean=¢o- 7/Esn-2? (13)
where, o = the strain of tensile bar at the base, and
T = 0wy /(zdl'xnl) ‘(h/D)z' (Pw /Pt) .

The height of the hinge region is expressed by Eq. (14) as the range in which
tensile bar is yielding.

7y = { (eo '_Esh)'Esh/T} 12 (14)
Hence, the value of the extension of the temsile bar in the hinge region
(corresponding to v) is given by Eq. (15) on the assumption of suy=0cy =Es-ey.

v=h{" ¢ dy
=D/3 Qeo+ esn)- {Bsn/Es-(co-esu)/ ey (pe /pu) - (2d1-%n1) } 72 (15)
Also, the drift angle is expressed by the following Eq. (16).

R=1/3 @so+ cs)* {Bsn/Bs- (co-esw)/ey- (pr /pw) » (2di-xa1)/(di-xar) ?} 172 (16
1

The drift angle at the stable limit is given by substituting the value of

¢ o.max(see Eq. (2)) and xa: (see Eq. (4)) into Eq. (16).

The strain distribution of the tensile bar along the height obtained from the
analysis is shown in Fig. 14 in comparison with the test results at the stable
limit. In Fig. 14, the assumed stress-strain relation for steel in the above
analysis is based on the stresses given by the reversed stress behavior,using the
strain measured in tests, and is shown in Fig. 15. The test results are in
excellent agreement with the analytical results.

CONCLUSIONS

The following findings were drawn from this study.

1) In the process of deformation from yielding to failure, there is a stable limit
from the point of view of energy absorption of columns, even though columns are
designed to behave in ductile manner. This stable limit corresponds to the
limit of the extension of tensile longitudinal reinforcing bars. While the
tensile bars is extending, the columns behaves on the stable load-deformation
curves. After the drift angle exceed the stable limit, the lateral load
carrying capacity drasticly decrease.

2) The relationships among theé strain in temsile bars, the strain of the extreme
compressive concrete fiber, the curvature, the depth of neutral axis in the
critical section at the stable limit, the stress-strain relation for concrete
and steel, and axial stress level are shown in Fig. 6, and Eqs. (2) ~ (4).

3) It is very important for estimating the deformation capacity of columns to
model the stress—strain relation for confined concrete.

4) The deformation mechanism of columns after flexural yielding can be represented
by the truss model proposed in this paper. The tension strain distribution
along the height in the hinge region obtained from tests are in excellent
agreement with the analytical value. The drift angle at the stable limit can be
calculated by Eq. (16), however for practical application, a number of tests
should be performed to examine its adequacy.
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