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SUMMARY

For the improvement of a plastic deformation analysis of RC beams, a simple
plastic hinge model was proposed, based on the experimental data obtained
earlier. The proposed model considers the effects of various factors such as the
compressive toughness of concrete, shear span length of a beam, etc. on the
spread of the plastic zone of the RC beams of flexural failure predominating
type. It was found that by using the proposed model, accuracy of the prediction
of the plastic deformation of RC beams from stress-strain relationships of
constitutive materials can be remarkably improved.

INTRODUCTION

The flexural deformation behavior of RC members is dependent mainly on the
rotation capacity of the failure concentrated zone, or plastic zone. However, the
effects of various factors on the spread of the plastic zone have not necessarily
been sufficiently examined (Refs.l,2). In the earlier reports (Refs.3,4), the
authors examined the rotation capacity and length of the plastic zone of RC beams
of flexural failure predominating type under both flexure and shear, and
discussed the applicability of stress (0)- strain (€) relationships from - the
conventional uniaxial test of concrete specimens to the plastic deformation
analysis of RC members.

The purpose of the present study is to construct a plastic hinge model
introducing the relation between the shear span length(%s), length of plastic
zone (p), sectional and material properties, based on the experimental evidences
reported earlier (Refs.3,4) to simulate the actual behavior of RC beams with
single reinforcement.

REVIEW OF EARLIER EXPERIMENTAL RESULT

It was - found in the earlier experiment that the curvature localization . in
the moment constant region (flexural span) of RC beams is remarkable (see
Fig.1(a)) as well as the region around the maximum moment section (see Fig.l(b)).
Figures 2(a) and (b) show the comparison of an analytical moment(M)-curvature(d)
curve: ‘and experimental M-¢ curves in various measurement length. 'Here, the
stress—strain - relation used in the analysis is measured from . the wuniaxially
compressed  concrete specimen whose height/width ratio is 2.0 and other . factors
such 'as section size, mix proportion of concrete, arrangement of ' lateral
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reinforcement are consistent with those of the compressive zone of the RC beams.
It is evident from these figures that the agreement of the M-¢ curves obtained by
analysis and experiment is essentially dependent on the curvature measurement
region for both cases of Fig.2.

A PLASTIC HINGE MODEL FOR RC BEAMS AND ITS APPLICABILITY

Experimental data of the deflection of the plastic zone of RC beams are
analyzed and separated into rotation and shear components.

Modeling of Rotation Component in Plastic Zone It is fundamental and essential

to clarify the following two points for the analytical discussion on the
rotation capacity of RC beams.

i)A region to which cross sectional M-¢ relationship calculated with the 0-€
relationships of constitutive materials should be applied (the length of which is
hereinafter referred to as application length of calculated curvature, %a)

ii)Relation between the application length of calculated curvature(fa) and
the length of plastic zone (Lp)

Note that the value of %p and 2a are not equivalent.

The authors have already discussed the above two items in the earlier
reports (Refs. 3,4) and proposed a series of experimental formulas for the
representation of 2p and &m. Here, &m is the experimental curvature measurement
length around the failure zone of an RC beam which gives the averaged curvature
equal to the analyzed one (see. Fig.2). The relation of &m with £a and fp is
discussed in 7) in the following explanation of computer program.
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Flow-chart of computer program to calculate M-¢ relationship in the plastic
zone from C-€ relationship of concrete is shown in Fig.3. Outline of the flow-
chart is described in the following.

1)Obtain 0-€ relationship of concrete used in an RC beam. In the present
study, the O-€ relationship from the prismatic specimen of height/width (H/D)
ratio 2 is used.

2)Express numerically the O-€ relationships of concrete and steel.

3)Calculate M-¢ relationship using the 0-€ relationships of constitutive
materials.

4)0Obtain compressive toughness of concrete at €=15x10"% (T;, area under O-¢
curve). It was already found there exists rather strong relation between T) and
2p,4m. The value of T; for unconfined concrete, e.g., is about 1.5 kgf/cm®.

5)Calculate corresponding curvature measurement length (2m) by Eq.(1l). Here,
fm 1is the curvature measurement length which gives the averaged -curvature
equivalent to the analyzed one.

= (3.40-0.1824/h) - (0.62-0.0425/h)T; (4h<Lg g 8h)
(xh] 2.00-0.34 T, (2g > 8h) (1)

Note that the value of 2m decreases with the increase in the toughness of

concrete Ty, as shown in Fig.4.

6)Calculate the length of plastic zone (2p) from the compressive toughness
of concrete (T;) by Eq.(2).
9p=(0.27 - 4s/B*L8)n (o5 an) (2)
X

[1)o-€ relationships of concrete specimen of H/D=2 and steel]
I

4)Toughness, Ti(at €=15x10"%) or
equivalent lateral confining pressure
[3)Calculation of M-¢ relationship) a.

1
B)Express‘lon of 0-€ re'lationsh'ips]
1

T T
5)Corresponding curvature [G)Plastic zone length, %p]

measurement length, m
7) (Am>Lp) Ra=Lm
(Im<ip) La=Lp

[8)M-¢ relationships in plastic zone 2p]

Fig.3 Flow-chart of computer program for calculation of M-¢ relationship of
plastic zone
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Note that the value of Lp increases with the increase in the toughness of
concrete Ty, as shown in Fig.4.

7)Determine the application length of calculated curvature (fa) comparing
the size of 2m and &p.  The relations of Ty with both &m and &p are shown in
Fig.4. For the case of Am<%p ( T, is approximately over 3.5 independently of %s),
we can assume 2a=fp. Because in this case the M-¢ relationship is quite ductile,
the approximation does not affect so much the evaluated ductility of RC beams.
Note, however, that calculated ductility in &p is a little over-estimated due to
the above approximation.

8)Predict M- relationship in the plastic zone (p). For La=lp, the M-0
relationship calculated in 3) represents the M- relationship in the plastic
zone. For 2a=tm, the M~d relationship in the plastic zone (solid line in Fig.5)
can be predicted from the calculated M-¢ relationship (dashed line in Fig.5) and
the unloading curve (dotted line in Fig.5). Here, the unloading curve represents
the M-¢ relationship of non- failure zone (e) and the starting point of
unloading is set to €cc=4x10-2 (where, €Ecc is the compressive fiber strain of RC
beams), which corresponds to the initiation of compressive failure of unconfined
concrete.

Modeling of Shear Component in Plastic Zone The shear rigidity (g) of the

failure zone was numerically expressed based on the experimental data. The
shear rigidity was represented as the hyperbolic function of curvature index
(d-9) with the tensile reinforcement ratio (Pt) and shear span length (&s) as
parameters which were found to affect remarkably the shear rigidity.

A
I=Fg+ctPo (3

where, A=4.1, Bo= (99 -9.5g/h) -10%-P¢2:%, ~ C=2/(€o~ Bo)
8o: initial shear rigidity.

Figure 6 shows comparisons between calculated values of g from Eq.(3) and
experimental data. For the more accurate estimation of g considering e.g. the
effect of the pitch (S) of lateral reinforcement, further experimental data are
required.

The plastic zone of RC beams is idealized as described above. For RC frame
analyses, the proposed model may be reformed, integrating the behavior of the
plastic zone, to a plastic hinge model in which the plastic behavior of failure
zone is concentrated at a point.
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Applicability of Proposed Model  Figure 7 shows the fitness of the calculated M-
¢ curves with the measured ones in the corresponding curvature measurement length
(&m). Here, the M-¢ curves are calculated only with the information of uniaxial
0-€ relationships of steel and concrete under the condition that a cross section
which was plane before loading remalns plane under load.- Rather good agreement is
found to be obtained.

Load(P)-deflection(§) relationships can be predicted from 0-€ relationships
of constitutive materials by introducing the proposed model of plastic hinge
(Fig.3) 1into a deflection analysis program. The flow-chart of computer program
for calculating the deflection at the end of a beam (hereinafter, end deflection)
is shown in Fig.8, and the deformed shape of the beam due to plastic rotation is
illustrated in Fig.9. We can calculate plastic rotation angle (6pr) and plastic
deflection (6pr) at the end of the plastic zone, based on the M-¢ relationship of
the plastic zone, then end deflection (Ap) due to plastic rotation. Adding
deflections due to shear (As) and elastic rotation (Ae) to Ap, we finally obtain
the total end deflection (4).

Figure 10 shows the fitness of the calculated P-§ curves with the measured
ones for 1.5h (h: height of RC beam) region adjacent to the maximum moment
section of RC beams under flexure and shear. Fair agreement is observed between
the curves. Here, the dashed line is the result neglecting shear deflection
outside the plastic zone, and the dotted line is the one adding the measured
shear deflection outside the plastic zone to the calculated value.
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Guarantee of Deflection Ductility Figure 11 shows the effect of the tensile

reinforcement ratio (Pt) and confining pressure (0p) by lateral reinforcement
(Ref.5) on the deflection ductility factor (ug) of the RC beam of Ls=6h. The
value of ug increases remarkably with the decrease in Pt and the increase in O,
forming a smooth curved surface. For the requirement of ug>5 in designing RC
beams, for example, shaded area in Fig.ll gives the satisfactory condition.

CONCLUSION

1)It is quite important to reflect sufficiently the effects of the
compressive toughness of concrete, moment-curvature relationship of a section,
distribution of load (e.g. moment gradient), etc. on the spread of plastic zone
for the fair prediction of the rotation capacity of RC beams.

2)A simple - plastic hinge model proposed in the present study is quite
effective for the improvement of the plastic deformation analysis of RC beams
based on the stress-strain relationships of constitutive materials.

Note that the proposed model is constructed only with the data from RC beams
under static load without axial force. Further examination is required to refine
the model on the effects of both axial force and repeated-over load (in this

case, the effect of failure in tensile zone on the ultimate failure of RC beams
should be carefully considered).
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