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SUMMARY

This paper presents investigations into the feasibility of the pseudo dynamic
(PSD) test with substructuring techniques (designated as the substructure PSD
test). First, constraints that block the versatile application of the
substructure PSD test were identified. Second, numerical integration methods that
fit to the substructure PSD test were searched, and the implicit-explicit
integration methods, particularly the operator-splitting method, were found very
effective in reducing some of the major constraints. Third, for several types of
the substructure PSD test, solution procedures were formulated, and the
effectiveness of the procedures were demonstrated by numerical experimentation.

INTRODUCTION

The pseudo dynamic (PSD) test is a combined experiment and numerical analysis
developed for the earthquake response simulation of structures. In most of the
previous applications, the specimen tested was a model that represented the whole
structure analyzed, but considering the fundamentals of the PSD test, we may not
necessarily test the whole structure. Suppose that we wish to analyze a structure
and know that only part of the structure takes complex hysteretic action, whereas
the hysteresis of the remaining part can be simulated very accurately. In such-a
case, instead of testing the whole structure, we only need to test the part with
the complex behavior, treating the rest numerically in the computer. Such type
of the PSD test, here designated as the substructure PSD test, is certainly a wise
extension of the PSD test. In fact, since the outset of the PSD test, the
potential of the substructure PSD test has been suggested. Nearly twenty years
have passed since then, but the substructure PSD test has not yet been applied
successfully except for very simple cases (such as PSD tests of a 2 DOF system
with a 1 DOF tested). The goal of the study is to establish the solution
algorithms and test procedures that lead us to the general application of the
substructure PSD test, and, as the initial step of the study, the objectives of
the paper presented are 1) to identify constraints that have blocked the versatile
application of this test; 2) to propose new solution algorithms that can remove
some of the major constraints; 3) to classify the substructure PSD test into
several types in accordance with their applications, to formulate test procedures
for each type, and to demonstrate the effectiveness of the new algorithms and
procedures by numerical experimentation.

CONSTRAINTS IN SUBSTRUCTURE PSD TEST
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Constraints that appear when we try the substructure PSD test may be
classified into three groups. They are: (1) constraints related to the
fundamentals of the PSD test (the fundamental issue), (2) those related to the
numerical analysis (the numerical issue), and (3) those related to the
experimental hardware (the experimental issue). Since the experimental issue is
known to depend a great deal on the hardware employed, it is not covered in this
initial step of the investigation.

Fundamental Issue The constraints associated with the fundamentals of the PSD
test, for example, the basic assumption that the hysteretic damping should
dominate in the damping mechanism of the structure analyzed, cannot be released,
either, in the substructure PSD test. Besides, when applying the substructure PSD
test, we should be reminded that the hysteresis of the numerically treated part
(computed part) need be accurately defined (in terms of the mathematical modeling)
relative to the hysteresis of the tested part; otherwise, selecting only part for
the test cannot be justified by any means.

Numerical Issue The PSD test employs an explicit integration method such as the
central difference method (CDM) so that the equations of motion of a structure
having nonlinear hysteresis can be solved without iteration. Because of the
conditionally stable nature of the explicit integration methods, it is made more
difficult to perform the test with the increase of the DOF's of the structure
analyzed, and, in the practice of the PSD test, we try to maintain the DOF's as
small as possible. In the substructure PSD test, this limitation is even more
crucial, because, the total DOF's are the sum of the DOF's of the tested part and
the DOF's of the computed part. Be reminded that we most likely wish to have many
DOF's in the computed part when applying the substructure PSD test.

NUMERICAL INTEGRATION METHODS FOR SUBSTRUCTURE PSD TEST

Numerical Integration Methods The focal point of the investigations presented is
to try to reduce the numerical constraints by introducing new solution algorithms.
Integration methods developed for the direct integration of equations of motion
are classified into two groups: explicit methods and implicit methods. The
unconditional-stability can be achieved in some implicit methods, but they do not
fit to the PSD test because of the iteration included in the computation. Explicit
methods are basically conditionally-stable, but some explicit methods still offer
the unconditional-stability. Two of them are the semi-implicit method and the
rational Runge-Kutta method. Unfortunately, it was disclosed that they do not fit
to the PSD test, either, because of the iteration involved as well as their rather
poorness in the solution accuracy. Some of the combined implicit-explicit methods
were found practicable and advantageous in the substructure PSD test. A combined
central difference and unconditionally stable Newmark method (the CDM-Newmark
method) (Ref.l) and a combined predictor-corrector and unconditionally stable
Newmark method (the PCM-Newmark method) (Ref.2) are two of such methods. When
those methods are used in the substructure PSD test, the tested part is integrated
using the explicit method (CDM or PCM), whereas the Newmark method is employed for
the computed part. In the CDM-Newmark method, the stability is given inversely
proportional to the highest natural frequency of the tested part with all masses
treated by the Newmark method assumed clamped, whereas, in the PCM-Newmark method,
it is inversely proportional to the highest natural frequency of the tested part
with all elements handled by the Newmark method assumed nonexist. With those
methods, the stability limitation can be reduced significantly particularly when
the DOF's of the computed part are many.

Operator Splitting (0S) Method Even using those implicit-explicit methods, the
stability constraint still remains if the DOF's of the tested part are many. We
found that another implicit-explicit method, named the operator-splitting (0S)
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method (Ref.3), is much more effective in reducing the stability constraint in the
(substructure) PSD test. In this method, the restoring force is split into the
linear and nonlinear parts, and the Newmark method is employed for computing the
linear part of the restoring force, while an explicit PCM is applied to compute
the nonlinear restoring force., The basic algorithms of the method are shown in
Fig. 1(a). When the OS method is employed in the PSD test, we take the initial
elastic stiffness to compute the linear restoring force, and the nonlinear
restoring force is given as the difference between the linear restoring force and
the measured restoring force at the predicted displacement (Fig. 1(b)). The
stability and accuracy conditions of the OS method were examined using the
amplification matrix approach. It was confirmed that the OS method provides an
unconditionally stable solution if the hysteresis is of softening type. The
accuracy condition, formulated in terms of the period distortion, is shown in Fig.
2, in which the nonlinearity is considered by a parameter, §: the ratio of the
stiffness assigned for the linear part to the true stiffness. The curve with 6 of
unity shows the accuracy condition of the unconditionally stable Newmark method.
Further, 6 is made not less than unity in the substructure PSD test as long as the
structure analyzed has hysteresis of softening type.
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CLASSIFICATION OF SUBSTRUCTURE PSD METHOD

In order to demonstrate the effectiveness of the CDM-Newmark, PCM-Newmark,
and OS methods, four types of substructure PSD tests that are likely to be
implemented were selected, and, for each type, solution procedures were
developed, followed by numerical experimentation.

Tested Part with Few DOF's There is a case in which the DOF's of the tested part
are few, although the DOF's of the computed part and accordingly the total DOF's
are many. In such a case, it is difficult to use CDM since the highest frequency
of the whole structure is very large. On the other hand, the CDM-Newmark and PCM-
Newmark methods can be used effectively, because the stability constraint of the
tested part can be cleared without difficulty. The OS method can also be used
because of its unconditional stability. It was found that all of the CDM-Newmark,
PCM-Newmark, and OS methods ensure accurate solutions as long as the integration
time interval is small enough with respect to the important vibrational modes.

Tested Part with Many DOF's If the DOF's of the tested part are many, it is
difficult even for the CDM-Newmark or PCM-Newmark methods to clear the stability
limitation. In this case, the 0S method is the best choice. To verify the
applicability of the implicit-explicit integration methods, a stick model of 20
DOF's (Fig. 3) was analyzed. In one case (CASE 1), the lowest spring was assumed
to be tested with the rest treated in the computer. Further, the spring was taken
to have bi-linear hysteresis, while the remaining springs behaved linearly. The
structural properties of the model are shown also in Fig. 3. Sinusoidal input
motion, followed by free vibration, was imposed to the model. The results are
summarized in Table 1, and some displacement time histories are shown in Fig. 4.
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The results disclose the poorness of CDM in terms of the solution stability. In
the next case (CASE 2), the lowest 5 springs (bi-linear) were taken to be tested,
while the rest (linear) treated in the computer. Table 1 and Fig. 5 show the
results, indicating that the most stable and accurate responses were ensured with
the 0S method. The OS method was applied for a PSD test of 5 DOF masonry
structure, and the effectiveness of this method was confirmed (Ref.4).
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Experimentation of Substructure PSD Test
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Revival of Rotatory DOF's In some substructure PSD tests, DOF's that are
statically condensed revive when splitting the structure into two (tested and
computed) parts. An example of such revival of DOF's is illustrated in Fig. 6. As
long as the whole structure is tested, it is nothing more than conventional as
shown in Fig. 6(b). If we cut the structure into two parts, in the tested part,
the moment (or the rotation) should be imposed at the boundary (Fig. 6(c)). This
moment (or the rotation) need be uniquely determined during the test by
considering the equilibrium and compatibility at the boundary, but this
determination is not so straightforward since the moment to be applied is a
function of the rotation at the boundary. One way to handle this is to apply the
moment (or the rotation) in a incremental manner, keeping monitoring the rotation
(or the moment), until both the equilibrium and compatibility are satisfied at the
same time. This incremental loading, however, has been found a very tedious
process., A more explicit way to determine the rotation is to introduce a
rotatory mass (since it exists in reality) and solve the expanded equations of
motion as shown in Fig. 7. Since such a rotatory mass is normally significantly
smaller than the associated translational mass, the highest natural frequency of
the structure with the expanded DOF's increases, and this high natural frequency
makes it difficult to employ any of CDM, the CDM-Newmark method, or the PCM-
Newmark method. Because of its unconditional-stability, the OS method can still
offer stable solutions. To examine the applicability of the OS method to such a
case, analyzed was a cantilever beam with a mass at the free end (Fig. 7), and
also considered both the flexural and shear deflections for the beam. Further,
the shear deflection vs. shear force relationship was assumed bi-linear. The
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rotatory mass that made the second mode natural frequency 10 times greater the
basic (first mode) natural frequency was assigned, and the 0S method was employed
to the expanded 2 DOF system subject to sinusoidal input motion. The result
obtained was accurate (Fig. 8), while, using the same integration time interval,
none of CDM, the CDM-Newmark method, or the PCM-Newmark method provided a stable
response. This procedure was also applied to a substructure PSD test (like the one
in Fig. 6), and reasonable results were obtained (Ref.4). Further investigation
is yet needed to verify the general applicability of this procedure in terms of
the solution accuracy of the mode promoting the vibration of the added rotatory
mass, but the OS method is still believed best, at least in the relative sense,
among various integration methods.
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Test with Force Control In the previous section, it was shown that splitting the
structure sometimes requires additional control of forces (or deflecticns) It is
not difficult to conceive that the control becomes more difficult with the
increase of the stiffnesses associated with the revived DOF's; however, if those
stiffnesses turn so large to be reasonably assumed completely rigid, the direct
force control at the boundary is made practicable. An example of such a case is
shown in Fig. 9, in which the axial stiffness of the column tested is presumed to
be infinite. The solution procedures follow; (1) to compute all displacements and
forces in the computed part; (2) to compute the axial force transferred from the
computed part through the boundary to the tested part; (3) to apply both the axial
force computed and the predicted displacement to the tested part; and (4) to
measure the reactional force needed for the computation. As an example of the
application of this type of substructure PSD test, selected was a 3 story
structural model having base isolation devices (Fig.10(a)). Here, the base
isolation devices were assumed rigid about the axial deflection and having
nonelastic relationship between the lateral restoring force and the axial force
imposed (Fig. 10(b)). The mass and vibrational properties of the model are listed
in Table 2. The results obtained (under sinusoidal input motion followed by free
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vibration) are summarized in Table 3, and several displacement time histories
shown in Fig. 11. Because of the stability limitation, CDM did not provide
accurate responses unless the integration time interval selected was extremely
small. The CDM-Newmark and OS methods, on the other hand, ensured accurate
responses with a much larger integration time interval. It is worth commenting
that, like in this example, if the analyzed structure has some part whose
stiffness is significantly smaller than the rest and that soft part is tested, the
effectiveness of the implicit-explicit methods is very distinguished in terms of
the gain of solution stability.
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CONCLUSIONS

This paper examined the applicability of the substructure PSD test. A
summary and major findings follow:
1. The constraints that have blocked the versatile application of the substructure
PSD test were identified.
2. Numerical constraints were found to decrease significantly with the use of the
CDM-Newmark and PCM-Newmark methods and particularly the operator-splitting (OS)
method.
3. Four types of substructure PSD test were considered, and, for each type, the
solution algorithms and test procedures were explained, and the numerical
experimentation demonstrated the effectiveness of the procedures developed.
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