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SUMMARY

This paper presents equations for computing the coefficients of cross-modal contributions from
the power spectral densities of recorded accelerograms. The equations account for the influence of
soil condition and for horizontal or vertical direction of ground motion. The findings from this study
show that the site-dependent coefficients may be significant not only for systems with closely spaced
frequencies but also for systems which are very flexible or very stiff. However, in the majority of
cases, the equation proposed by Wilson, Der Kijureghian and Bayo (Ref. 7) for computing the
coefficients based on a white noise is accurate and easy to use.

INTRODUCTION

The response spectrum procedure for computing the maximum response of a multi-degree-of-
freedom (MDOF) system consists of (1) transforming the governing equations of motion from the
geometric coordinates to a set of normal mode coordinates whereby the modal responses are obtained
directly from the spectrum, and (2) combining the modal responses to obtain an estimate of the
maximum geometric response. Since the modal spectral responses do not occur at the same time, the
accuracy of the procedure depends on how the modal and cross-modal contributions to the geometric
response are accounted for in the combining method. Among the combining methods, the one which
has been used extensively in practice is the SRSS method (Refs. 1, 2 and 3) where the maximum
geometric response is obtained as the square root of the sum of the squares of the modal response
maxima. Since this combining method disregards the cross-modal contributions, satisfactory results
are achieved only for systems where the frequencies are spaced apart from each other. For systems
with closely spaced frequencies, however, the cross-modal contributions are significant (Ref. 4) and
the use of the SRSS method may lead to incorrect answers.

Der Kiureghian (Refs. 5 and 6) has developed a combining procedure, based on a random
vibration approach, which accounts for the cross-modal contributions. His procedure which is
referred to as the "Complete Quadratic Combination or CQC" has been recommended (Ref. 7) as a
better alternative to the SRSS method. Der Kiureghian presented expressions for the coefficients of
the cross-modal contribution using a white noise and a filtered white noise. His results indicate that
in addition to damping, the coefficients depend to a large extent on the frequency content of the
excitation. It should be noted that simulating earthquakes by an assumed power spectral density does
not account for the soil condition and the direction of motion which influence the frequency content

of the ground motion (Ref. 8).

This paper uses smooth normalized power spectral densities from ensembles of accelerograms
recorded on alluvium and rock to obtain the coefficients of cross modal contributions. The
expressions for evaluating the coefficients are presented in terms of the Kanai-Tajimi power spectral



density and the Clough-Penzien filter. The influence of the soil condition on the coefficients is
examined and discussed. The responses of a 6-DOF structure consisting of two rigid slabs
supported on three corner columns to two base excitations are computed using the coefficients from
this study, those proposed in (Ref. 7), and the SRSS method and compared with a time history
analysis.

COEFFICIENTS OF CROSS-MODAL CONTRIBUTION

The coefficients of cross-modal contributions p,,, are defined in terms of the correlation
between the n-th and m-th modes of vibration (Refs. 5 and 6) as
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where A, ,, is the first spectral moment of the response cross-power spectral density. Assuming
that the base excitation is a modulated random process { X, (z) } with a zero mean (Ref. 8), a set of
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where Hy,(f) is the complex frequency displacement response function of the n-th mode given by
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and the (*) indicates the complex conjugate of H. If the damping ratio & is assumed the same for
every mode, it can be shown upon substituting from Eq. (3) into Eq. (2) and letting s =fif, and r =
Jnlfm that
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Der Kiureghian used the residue theorem to integrate Eq. (2) for both a white noise and a
filtered white noise. While the resulting expression for the white noise is simple, it is complicated for
the filtered white noise which is more representative of earthquakes. Wilson, Der Kiureghian, and
Bayo (Ref. 7) proposed a simplified expression for the coefficients of cross-modal contributions for
lightly damped systems by assuming that the earthquake spectrum is smooth over a wide range of
frequencies. For a constant modal damping ratio, their expression reduces to

p = 8EXA+nr LA -rD + 4 1+ )



The above expression does not reflect the influence of soil condition nor does it account for the
direction of the motion which influence the frequency content of the excitation. These influences can
be included using the power spectral densities of recorded accelerograms on different soil conditions.
The Kanai-Tajimi expression for power spectral density (Refs. 9 and 10) together with the Clough-
Penzien filter (Ref. 11) which eliminates the singularities in the Kanai-Tajimi expression at low
frequencies are used to express the normalized power spectral density as
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where H1(f) and H,(f) are the Kanai-Tajimi and the Clough-Penzien filters, respectively, given by
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and G, is the intensity of the normalized power spectral density. The parameters of the filters

fgr &g f» & and Go computed using the power spectral densities of the accelerograms on various
soils (Ref. 12) are given in Table 1. To avoid lengthy mathematical expressions, numerical
integration was used to evaluate the coefficients in Eq. (4). The Nyguist frequency of 25 cps used to
compute the power spectral densities, was selected as the upper limit of the integration.

Table 1 Summary of Kanai-Tajimi and Clough-Penzien Parameters Computed from Normalized
Power Spectral Density of the Ensemble of Accelerograms

Soil No. of records G, fe e i 3
Horizontal
Alluvium 161 0.102 2.92 0.34 0.388 0.29
Rock 26 0.070 4.30 0.34 0.486 0.26
Vertical
Alluvium 78 0.080 4.17 0.46 0.272 0.27
Rock 13 0.053 6.18 0.46 0.502 0.24
RESULTS

Equations 1 and 2 indicate that the coefficients of cross-modal contributions are symmetric.
Taking advantage of symmetry, the coefficients can be presented in terms of the larger frequency and
a frequency ratio between 0 and 1.0. Figure 1 shows typical plots of the cross-modal contributions
as a function of the frequency ratio r and the larger frequency f,, for horizontal motion on alluvium.
The plots indicate that in addition to damping and frequency ratio, the coefficients depend on the
larger frequency, and at times they may be negative. The plots also show that as f,, and r increase (a
stiffer system) or as f,, and r decrease (a more flexible system) p,,,, tend to increase. Figure 2 shows
the comparison of the coefficients from this study with those from Eq. (5) and indicates that soil
condition and the direction of motion influence the coefficients. The figure also illustrates that for
stiff systems, the coefficients of cross-modal contributions may be significant even for cases where

the frequencies are spaced apart.
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Figure 1  Variation of coefficient p,,,, with frequency ratio r and larger frequency f,, for horizontal
motion on alluvium.
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Figure 2 Influence of soil condition on coefficient p,,, - - S percent damping.
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Fig. 3 Rigid slab structure used
in the example problem.

The coefficients were used to compute the
response of a two story frame consisting of two rigid
square slabs supported on columns at three of the four
corners (Fig. 3). This example is similar to the one
story structure considered in Ref. (11). The structure
was subjected to the N21E component of Taft, 1952
(alluvium) and the N21E component of Castaic (rock).
The column properties were selected to represent a stiff
structure with frequencies of 4.95, 5.39, 9.57, 12.97,
14.10, and 25.00 cps. The response spectrum of each
record was used to compute the six modal responses.
The square root of the sum of the squares (SRSS) and
the complete quadratic combination (CQC) with both
the coefficients in Eq. (5) and this study were used to
combine the modal responses. The results are
presented in Table 2 together with those from the time-
history analysis. The table shows that for both
alluvium and rock, the results from this study are in
close agreement with those using the coefficients in
Ref. (7) and compare far better with the response from
a time history analysis than do the results from the
SRSS combination. In addition, the responses
computed from the CQC methods do not show the
peculiar behavior (equal displacements at v, and vs,
and vs and vg) which is obtained using the SRSS
combination.

Table 2 Comparison of Displacement Response for 5 Percent Damping

Method Displacement (in)

Vi v v3 V4 Vs Ve
Taft N21E (alluvium)
Time history .057 .092 174 .035 .056 .108
SRSS .088 132 132 .054 .082 .082
CQC (Ref. 7) .064 .088 165 .039 .055 .102
CQC (This study) .055 .074 .168 .034 .046 .106
Castaic N21E (rock)
Time history .067 .142 304 .042 .089 .196
SRSS .144 .258 258 .089 .159 .159
CQC (Ref. 7) .097 .188 312 .060 .116 .193
CQC (This study) .093 .184 309 .058 114 .194

An examination of the coefficients of cross-modal contributions for the structure considered in
this study and several others indicates that the coefficients computed from the site-dependent power
spectral densities are generally larger than those from Eq. (5). However, since the contn'buuons
from the higher modes are not as significant, the resu1t§ fror_n the two. C_QC methods are in close
agreement. The coefficients computed from Eq. (5) give, in the majority of cases, satisfactory
results. For structures which are either very flexible or very stiff, the site-dependent coefficients may
be more appropriate to use in combining the modal displacements and modal forces.



CONCLUSIONS

The coefficients of cross-modal contributions are influenced by soil condition and may be

significant not only for systems with closely spaced frequencies but also for systems which are very
flexible or very stiff. In the majority of cases, however, Eq. (5) proposed in Ref. (7) for computing
the coefficients is adequate, gives satisfactory results and is easy to use. The equations presented
herein may also be used to compute the coefficients of cross-modal contributions for vertical motion.
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