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SUMMARY

In current design practice, buildings are expected to yileld during a
design level ground shaking and are designed accordingly. Such design pro-—
cedures are, however, impirical. 1In this paper, an equivalent linear response
gpectrum method is presented to rationally analyze nonlinear hysteretic struc-
tures to calculate their design response in terms of site ground response
spectra. The site spectra must be prescribed in terms of the conventional
pseudo acceleration and relative velocity spectra as well as the velocity
spectra of a massless oscillator. This approach will enable rational
incorporation of the effects of material nonlinearity in earthquake resistant
design of structures for design ground motions prescribed in terms of response
spectra.

INTRODUCTION

For seilsmic design of important structures, the design ground motion is
commonly defined in terms of smoothed pseudo acceleration or pseudo velocity
response spectra (Ref. l1). For linearly behaving structures, the input ground
spectra can be directly utilized in the calculation of response of primary
structure as well as a supported secondary structure. However, according to
current design codes (Ref. 2 and 3), majority of buildings are expected to
yield and behave nonlinearly in a hysteretic fashion during their design ground
shaking and should be thus designed accordingly. In such design, the questions
like "What will be the ductility demand and what level of forces are expected
when a structure 1is subjected to its design level earthquake” are difficult to
answer for a hysteretically behaving structure. Such structural assessments
and design evaluations are possible for ground motions defined in terms of
acceleration time histories, but for the design earthquakes defined in the form
of ground response spectra, the analytical methods to do this are not available
currently. This paper addresses this problem and presents an equivalent linear
response spectrum approach for the analysis of structures which behave non-
linearly in hysteretic fashion.

ANALYTICAL DEVELOPMENT

The equation of motion of the 1t pags of a shear building, such as the
one shown in Fig. 1, can be written as:

m, X, + Pi - Pi+1 = —mixg, i=1...n 1
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where my = mass of the ith floor; x4 = displacement of mass i with respect to
ground; ;g(t) = ground acceleration and P; is the spring force in the ith
story. Force Py is hysteretic with memory. That is, it depends upon the
deformation of the spring as well as the rate of change of deformation.

Several models have been used to describe this force. The most commonly used
model is the idealized bilinear model which also includes the elastoplastic
models, especially for steel structures. Most of these models are hard to deal
with in analytical methods, especlally the methods which are concerned with
stochastic inputs and response. A versatile model was proposed by Wen (Ref.

4), which utilized the endochronic model of Bouc (Ref. 5). This model, for the
ith story, is defined as follows:

Pi(“i’vi) = aikiui + (l—ui) k

in which oy is the post yield to initial stiffness ratio; ky = initial stiff-
ness; uy = deformation of spring = x;—x;_; and vy = auxliliary variable defined

1’1 (2

by the following differential equation, originally proposed by Bouc (Ref. 5)
and subsequently modified by Baber and Wen (Ref. 6)

. s ° T\"l_ . n

vy = um vyl v, | By lv,l (3)
By changing the parameters Yy Bi and n several different shapes of the

hysteresis loop can be obtained to suit the characteristics of a deforming ele-
ment (Refs. 6,7).

Because of Eq. 3, the equations of motion are nonlinear. Eq. 3 can be
replaced by an equivalent linear equation in terms of uy and vy as:

Vi T aguy by *
where the coefficients of linearization ay and bi are obtalned by standard
stochastic linearization procedure (Refs. 8,9,4) by minimizing the mean square
error between the nonlinear and equivalent linear equation.

The three coupled Eqs. 1, 2 and 4 for each mass and story can be combined
into a system of first order linear differential equations written as:

{y} + [Al{y} = {F(D)} (5)

where {y} 1is the state vector consisting of the n-displacement coordinates xy,
n-velocity values x, and as many auxiliary variables vy as there are the
yielding hysteretic elements. For the shear building shown in Fig. 1, this
vector will be of size 3nxl. The system wmatrix [A] consists of the mass,
stiffness, and damping matrices of the structure, as well as the matrices which
are related to the linearization coefficients a; and by and also stiffness
ratios ay. More details of these are provided in References 10 and 1ll.

To obtain the response, the coupled set of equations (5) are decoupled by
utilizing the eigenproperties of matrix [A]. It can be shown that a response
quantity linearly related to the state vector {y} can be written as (Ref. 1l1),

N t -p,.(t-1)..
S() = ) q, [ e 3 x (t)dr (6)
=1 3 o g

in which P4 is the jth eigenvalue of matrix [A], N = the size of matrix [A],
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and 95 = jth modal response of the quantity of interest which is linearly
related to the jth eigenvector.

As the matrix [A] is a general nonsymmetric matrix, its eigenvalues and
eigenvectors can be real as well as complex. However, here it is crucial to
realize that there will be as many real eigenvalues as there are the yielding
elements in a hysteretic system. These real eigenvalues are related to the
rate with which the deformation velocity of the yielding element change (or
decay) with time. This decay rate determines the path of the hysteresis
loop. We will denote these real eigenvalues by vj.

The remaining eigenvalues of matrix [A] will be complex and conjugate. To
develop a response spectrum approach we choose to write the complex and con-
jugate eigenvalues, Pj» in the following form

2 o 2
=B.w, +1 w,/1-8 ; *=8 - iw V/1-8", 7
SR Py 5 Py T By T e y/loRy O
This form of eigenvalues is similar to what one obtains in the analysis of a
linear structure. In the case of a linear structure, w and B, will be the

]
modal frequency and damping ratio parameters. In the present nonlinear case,
these two are the equivalent linear modal frequency and effective modal damping
ratio values.

Response in Eq. 6 can be calculated for a given ground motion time his-
tory x (t) . However, we are interested in calculating the design response with
due consideration of the occurrences of all possible ground motion at the site.
To do this we model x (t) as a stochastic process and obtain the maximum

response of the system subjected to such motions. In random vibration analy-
ses, the maximum response is related to the mean square response. It can be
shown that for stationary input, the stationary mean square response of a
response quantity, defined by Eq. 6, can be expressed as:

n
2 - 2
E[5(t)] 321 Gylyy * ijk Uyhee Bacry * BeTud

n

2 l 1] ?
+4 (I‘jIZj + ajI j) +4757 7 ( jkIzj + BjkI3j + CjkIZk +D jk 31()
j=1 jtk
n
+ 2 321 (AjIlj + BjIzj + chBj) + %ﬂ):< (Ajkllj + BjkIZk + CjkI3k
+ AMMI,. + B!"I,, +C!" (8

jctie T Bjclay * Cielay)

where qpy are the real q; values; n = the number of degrees of freedom of the
structure; Ajk’ Bjk’ etc. are the coefficients of partial fractions, the
details of which are given in Reference 1ll; and Fj is defined as
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= - - (€))
rj wj(ajej bj/l Bj)

in which ay and bj are the real and imaginary parts of 93 Ilj’ IZj and 13j

are the frequency integrals defined in terms of the ground motions spectral
density function ¢g(w) as:

-] 1 ) ~ 00 2
I = f_w ¢g(w) ;51:5 dw ; I2j = f_m Qg(w)lujl dw

3
(10)
Iy =f @g(w) wlejlzdw

-1
where Hj = (w§m2 + Ziijjw) .
It is seen that the frequency integrals I2j and I3j are the mean square
displacement and velocity values of an oscillator of frequency wj and damping

ratio Bj’ excited by ground motion of spectral density function ¢g(w). These

can be expressed in terms of the pseudo acceleration and relative velocity
response spectra of the ground motion, respectively, denoted by Rpj and Rvj’ as

2 (an

2,2, -

IZj (Rpjﬁijz) 5 ISj (Rvj/F3)
where F, and F3 are the assoclated peak factors which when multiplied by the
root mean square responses give the maximum response or the response spectrum
values. Similarly, the frequency integral Ilj is the mean square value of the

velocity v appearing in the following first order differential equation:

v+ vyv o= ;g(T) (12)

This mean square value can also be expressed in terms of the velocity

response spectra obtained for Eq. 12. Here this spectra is called as the
velocity spectra of a massless oscillator. Fig. 2 shows one such average
spectrum obtained for an ensemble of 75 synthetically generated accelerograms.

The mean square response in Eq. 8 can, thus, be calculated in terms of the
input ground motion response spectra. The root mean square value of the
response when multiplied by the response peak factor will provide the maximum
response of design interest. The required peak factors can be approximately
evaluated by one of the several approaches [e.g. Ref. 12].

NUMERICAL RESULTS

Fig. 3 shows the variation of the maximum shear in the four stories of the
structure shown in Fig. 1 versus the intensity of excitation. The seismic
input for this was defined in terms of pseudo acceleration and relative velo—
city spectra for a single degree of freedom oscillator as well as the wvelocity
spectra of massless oscillator. The parameters of the hysteretic models were

taken as: a = .25, B =y = .S(V)’)—n in which v, was the yield level. It is

the level at which the initial stiffness line and post yield asymptote inter-
sect. The exponent parameter was taken to be 21. The hysteresis model para-
meters have been taken to be the same for each story. The initial straight

lines on the graph when extended give the response of a linear structure with
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the story stiffness being the same as initial stiffness. It is noted that the
values for the hysteretic structures are smaller than those of the linear
structure.

Fig. 4 shows the maximum story shear for maximum ground acceleration of
.2g but with increasing yielding levels of the stories. It is seen that the
shear value increases with the increase in the yield level till they asympto-
tically approach the maximum limiting values obtained for the elastic struc-—
ture. It is noted that the qualitative character of these curves is as one
would expect for a hysteretic nonlinear structure.
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