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SUMMARY

The present paper develops a method of optimum design for nonlinear multiple-degree-
of-freedom (MDOF) systems. The method does not require nonlinear analysis but is carried
out with the aid of linear random vibration analysis under the assumption that the seismic
excitation can be idealized as a nonstationary stochastic process. For the MDOF system thus
optimized, the relationship between the response modification factor R and ductility factor
i is established statistically by means of Monte Carlo simulation techniques and least square
algorithm. The relationship is needed in the ensuing system reliability analysis.

RESPONSE MODIFICATION FACTOR (RMF)

The RMF is one of the design-oriented and risk-related concepts which reflects in ap-
proximation the behavior of nonlinear structures subjected to severe seismic loading. The
factor is usually estimated as a function of the ductility factor u. The concept of RMF was
originally developed for single-degree-of-freedom (SDOF) systems so as to establish a design
procedure based on nonlincar response spectra (Refs. 1, 2, 3 and 4). One of the better known
expressions is R = /2u — 1. Application of this same concept to MDOF systems is, however,
not straightforward since the potential for concentration of nonlinear deformation at a number
of stories always exists (Ref. 5). If we apply the concept to MDOF shear type stick systems,
R;, the RMF of the ¢-th story, may be defined as follows:

Ri = Qu/Qni 1)

where @ ,; is the maximum interstory shear force at the i-th story obtained from the nonlinear
response analysis and @Q; is the maximum interstory shear force at the same story of the
corresponding linear elastic system. The story ductility factor p; at the i-th story is now

defined as:
pi = Uni/Uyi (2)

in which U,; indicates the absolute maximum interstory displacement at the i-th story ob-
tained from nonlinear response analysis and Uy, the yield displacement of the same story.

©

OPTIMUM MDOF SYSTEMS

A shear wall building is idealized as a stick model consisting of several discrete masses,
bilinear hysteretic springs and linear dampers. In the present study, if this stick model satisfies
the following conditions, it is considered to represent an optimum design.

(a) Under a particular earthquake ground acceleration idealized as a nonstationary
Gaussian random process, the maximum root mean square value of interstory displacement
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evaluated for the corresponding linear building is identical for all stories. (b) The yield
interstory displacement is also identical for all the stories.

As will be shown later, such an optimum design does minimize the concentration of
nonlinear interstory displacements. In the present study, the discretized mass is assumed to be
identical throughout the model and the optimum design is performed by finding the optimum
value of the stiffness for each story. For this purpose, the following iterative procedure is
used: K! = K,0;/5 where K;, o; and & are the i-th story stiffness, the maximum linear
root mean square interstory displacement at the i-th story and the average of o; over all the
stories, respectively, and I} is the new value of the stiffness of the ¢-th story in this iterative
procedure. The iteration continues until a convergence criterion is satisfied.

In order to estimate the root mean square of interstory displacement of the linear system,
random vibration theory is utilized (Ref. 6) and is briefly described below. In this analysis,
the earthquake ground acceleration z(t) is assumed to be the product of a Gaussian stationary
random process ¢(t) and a deterministic envelope function f(¢):

£(t)=g(t) f(1) (3)

where g (t) is assuned to have zero mean and the well-known Kanai-Tajimi power spectrum
S (w) characterized by the following spectral parameters: intensity So, characteristic frequency
wy and damping ratio ¢, of soil layer (Ref. 7), and the envelope function is specified in the
following form: f(t) = (e~ —ePt) H(t) where a and 3 are parameters that determine
the shape of f (¢) and H (¢)= Heaviside unit step function (Ref. 8). It then follows that the
auto-correlation function Rj; (t1,t2) of Z (t) has the form:

Rz (t1,t2) = f (1) f (t2) Ryg (t2 — 1) (4)

where R, (t) is the auto-correlation function of ¢ (t). Utilizing the modal analysis, the root
mean square of the interstory displacement of the corresponding linear system can be com-
puted.

STATISTICAL MODELING OF THE R-p RELATIONSHIP

We now develop the R-p relationship that can apply to every story of the optimum
structure. Since the relationship between R and p depends on so many factors that it can
only be established on a statistical basis. In order to find the statistical characteristics of such

a relationship, we assume:
R=ey/3i=T (5)

where € is an adjustment factor representing the degree of deviation of the relationship from
the expression /2u — 1. Assuming that the median value of € is independent of the ductility
factor p, but the variance of € is a function of u, the statistical characteristics of the adjustment
factor e are determined from the response analysis based on the Monte Carlo simulation.

In order to find the median value € of ¢, the least square method is utilized, minimizing
the square of the deviation between the expression \/2u — 1 and the simulated data. Simi-
larly, the logarithmic standard deviation B¢ of €, assuming a log-normal distribution for e, is
estimated by using the following expression:

82 = (Ady? = (InRi— inRe)” = s (ui = 1)° (6)

where Ry is the median value of RMF associated with the k-th data point for which x =
and f¢ denotes the log-normal standard deviation of the median relationship. s and ¢ are
empirical coefficients to be determined. Using the first-order Taylor expansion with respect
to coefficients s and ¢, the values of empirical coefficients s and ¢ are estimated based on the
least square algorithm (Ref. 9).
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The Monte Carlo simulation begins with the generation of artificial earthquake ground
acceleration time histories. Sample functions of g (¢) can be digitally generated with the aid
of the following expression (Ref. 10):

Ny
g(®) = \/52 VG (wi) Awcos (wit — ¢r) @)
k=1

where wi = kAw, G (wi) = 25 (wi), Ny = number of equally spaced discretized frequencies,
N¢Aw = upper cut-off frequency, and ¢ = random phase angles uniformly distributed be-
tween 0 and 27. Different sets of ¢ yield different samples of random process g (t). Each
sample function of g (¢) thus generated is used in Bq. (3) with the envelope function f ()
prescribed before to provide a sample function of #(t) to be utilized in the ensuing Monte
Carlo simulation analysis.

To obtain simulated values of RMF and ductility factor for each sample, the nonlinear
and corresponding linear analyses are performed. The equation of motion for the nonlinear

system is written as: 3 )
My + Cy + Q = —M1Iz ®)

in which M = diagonal mass matrix, C = Rayleigh daemping matrix based on the corre-
sponding linear system, Q = restoring force vector, I = influence vector and # = ground
acceleration. For each sample function of #(t), Eq. f) is solved for the response y (t) by
means of step-by-step integration. The resulting ensemble of these response time histories are
used to derive key response statistics.

NUMERICAL RESULTS AND DISCUSSION

Characterization of Earthquake Motion Two different sets of parameters of the IKanai-Tajimi
spectrum are considered to represent two kinds of soil conditions; wy and (, are set equal to
8m rad/sec and 0.6 respectively for rock or stiff soil, while they are 2.47 rad/sec and 0.85
respectively for soft soil and sand (Ref. 11). Parameters a and 3 describing the deterministic
envelope function f (t) are set equal to 0.25/sec. and 0.5/sec., respectively.

Structural Models Three different stick models (three-mass, five-mass and ten-mass models)
with fixed base are selected as representative structures. The masses of all three models are
identical along the height. On the other hand, the stiffness distribution are determined using
the iterative procedure based on the random vibration analysis under each soil condition.
The undamped fundamental periods of these stick models are estimated to be approximately
0.5, 0.7 and 1.0 seconds, respectively. In order to examine the effect of damping on the R-u
relationship, two damping ratios, h= 0.02 and 0.05, are considered. These values represent the
modal damping ratios of the first two modes under the assumption of the Rayleigh damping.

For the structural nonlinear property, two types of nonlinearity are considered: a perfect
elasto-plastic and a bilinear hysteretic with hardening ratio of 0.1. The same nonlinearity is
assumed to apply to the force-displacement relationship of each and every story. Two levels
of yield displacement of each story are considered so that the target ductility factor response
falls in the range between 1.0 and 10.0.

Fifteen different cases are considered among possible combinations of three structural
models, two soil conditions, two damping ratios and two types of nonlinearity. These fifteen
cases are described in Table 1.

Optimum Stiffness Distributions The optimum stiffness distributions are obtained in the
manner described above and plotted in Figs. 1 and 2. These figures clearly indicate that
the optimum stiffness distribution for a specific structure do not differ significantly even for
different input earthquake motions and damping ratios. Figure 3 shows the root mean square
interstory displacement time histories for the three-mass model. These plots suggest that the
root mean square interstory displacement appear almost identical for all the stories.
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R-u Relationships Figure 4 shows a sample input earthquake motion used in thfa Monte Carlo
simulation involving the step-by-step time domain analysis. The Monte Carlo simulation uses
forty sample functions for each structure considered and the resulting data points are plotted
in Figs. 5 to 7, respectively for the first, second and third story of the three-mass model. The
R-p relationship for each story can then be established statistically from these data points.
The nature of the scatter of these data points at each story shows a considerable similarity
and hence it implies that there is not much concentration of nonlinear deformation at any
story. The similarity observed is considered attributable to the design optimization performed.
Taking advantage of this similarity, the data points for all the stories are combined for the
three-mass model and plotted in Fig. 8. The median and logarithmic standard deviation of
the adjustment factor e are then computed on these combined data points. The resulting
median, median+f3,, median®20, and the expression \/2u — 1 are plotted also in Fig. 8.
Essentially the same results are obtained for the five- and ten-mass models. For all these
models, although there is a large scatter, the median R-u relationship and the logarithmic
standard deviation f¢ as a function of u are practically identical. In particular, the median
R-p relationship can be expressed as ey/2p — 1 where the median € of € is a constant for all
the models.

Table 1 Description of Numerical Examples and Results
S1: Rock or Stiff Soil, S;: Soft Soil and Sand

Case Number Input Damping | Strain Median Be Be

Code of Mass |Spectrum | Ratio |Hardening g s ¢ (p=5) | (u=10)
M3S1H5 3 Sy 0.05 0.0 1.23 0.0541 0.432 0.31 0.37
M3S2H5 3 Sa 0.05 0.0 1.08 0.0629 0.417 0.33 0.40
M3S1H2 3 Si 0.02 0.0 1.32 0.0553 0.812 0.41 0.57
M3S2H2 3 Sa 0.02 0.0 1.24 0.0603 0.543 0.36 0.45
M3S1A1 3 Sy 0.05 0.1 1.25 0.0419 0.621 0.31 0.40
M3S2A1 3 Sa 0.05 0.1 1.05 0.0513 0.489 0.32 0.39
M5S1H5 5 S 0.05 0.0 1.22 0.0519 0.396 0.30 0.35
M5S2H5 5 Sa 0.05 0.0 1.16 0.0658 0.641 0.40 0.52
M5S1H2 5 Sy 0.02 0.0 1.34 0.0723 0.107 0.29 0.30
M5S2H2 5 Sa 0.02 0.0 1.27 0.0926 0.542 0.44 0.55
M5S1A1 5 Sy 0.05 0.1 1.18 0.0365 0.395 0.25 0.29
M5S52A1 5 Sa 0.05 0.1 1.10 0.0511 0.522 0.32 0.40
M10S1H5 10 Sy 0.05 0.0 1.17 0.0659 0.310 0.32 0.36
M10S1H2 10 Si 0.02 0.0 1.27 0.0770 0.261 0.33 0.37
M10S1A1 10 Sy 0.05 0.1 111 0.0459 0.275 0.26 0.29
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- Table 1 also lists the results of statistical analysis associated with the adjustment factor
€ for all cases. From this table, we observe that the median values é is approximately 1.2
for all models and hence the expression \/2u — 1 is 1.2 times more conservative in the range
of the ductility factor between 1.0 and 10.0 for the optimum systems. We also observe that
the log-normal standard deviation 8. increases as ductility factor increases. S is around 0.3
for the ductility factor of 5. It appears that these observations are valid for all the cases
considered here.

0.10 - —— e §0.0 [
= Whole Stories g W )
= | / = oo WM)’W’.«“. '..
S S -
I :
G.UOU.G — 5.‘0 — 10’-0 l 1S.0 ‘SO-DU.U — LS.U — IlU.D‘ — 15.0 20.0
Time (sec.) Time (sec.)
Figure 3 Root Mean Square of Interstory Figure 4 A Generated Sample |
Displacement (Case: M3S1H5) (So=1.0, wy=8m, ¢;=0.6)
€.2C €.00
4.00 7 4.C3 -
3.5 T Rl -
= 1 « -
200 q 2.00 4
Tl 1 Lee b e
0.::0.00 5.230 — IU.LOO . ' 15.00 n'ucg,ug ) 5.210 : 10.'09 — vls_gg
B P
Figure 5 R-u Relationship Figure 6 R-u Relationship
(First Story, Case: M3S1HS5) (Second Story, Case: M3S1H5)
Median+24
10.9 - - —
F N =120 (Sample size) / 1

c.an o T S
Q.00 5.00 10.00 15.00
»®

Figure 7 R-u Relationship
(Third Story, Case: M3S1H5)

Figure 8 Combined R-u Relationship
(Case: M3S1HS5)

V-133



CONCLUSIONS

For the optimum shear buildings designed here, (1) the R-u relationship R = /2y =T
can be used as the median relationship with the median adjustment factor € = 1.2, (2) the
logarithmic standard deviation Be of € varies hetween 0.3 and 0.5, depending on the value
of ductility factor and (3) these results are independent of structural dynamic characteristics
and earthquake input property.

Finally, the following future studies are suggested: (1) more sophisticated nonlinear
(e.g., more elaborate hysterctic) behavior be considered in the analysis, (2) actual earthquake
records and more realistic modeling of earthquake ground motion incorporating, for example,
time-varying frequency contents be used for Monte Carlo simulation, {)3) sample ground ac-
celeration time listories based on respounse spectra, rather than power spectra, be used for
also Monte Carlo simulation and (4) the reliability analysis procedure based on the concept
of the RMF be developed and implemented.
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