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SUMMARY

As world-wide design procedures change from the elastic to the ultimate
state design (Ref 1), elastic-plastic response spectra are gaining greater
importance. than elastic spectra. Choosing the ductility factors, p , and the
cumulative plastic displacement ratios, » , as the non-dimensional measures of
structural damage that depend on the maximum and cumulative responses of
structures, we had derived semi-empirical formulas for estimating damage to the
structures with different hysteretic characters (Ref.2). Here we verified
numerically the validity and accuracy of the basic assumptions made in their
derivations.

ELASTIC-PLASTIC RESPONSE ANALYSES

Seven hysteretic models were used in calculating the elastic-plastic
response spectra as well as the linear systems: a) Elasto-plastic model, b) Slip
model, c) Ramberg-Osgood model, d) Origin-oriented tri-linear model, e) Maximum
point-oriented bi-linear model, f) Stiffness deteriorating tri-linear model and
g) Takeda model. In the models that have a tri-linear skeletal curve (d,f,g),
the height of the first folding point (Qc) was set as one-third of the yielding
strength (Qy) and the secant modulus at the yielding point as one-fourth of the
initial stiffness. The periods determined from the secant modulus at the
yielding points, which are twice the periods calculated from the initial
stiffness, represent the fundamental period of the structures in this study.
The parameters of the Ramberg-Osgood model were set at «=0.5 and B =5, the
period being derived from the initial stiffness.

Four strong motion accelerograms, two recorded in the United States and two
in Japan, were used; 1) El Centro 1940 (NS), 2) Taft 1952 (EW), 3) Hachinohe
1968 (EW) and 4) Tohoku University 1978 (NS), the duration being set at 3@ sec
and the intervals at 0.02 sec. These accelerograms have been often used for the
design of important structures such as high rise buildings in Japan. Four
levels of yielding acceleration, Ay, were used in the ratio, 8, to the maximum
acceleration of the El Centro accelerogram, Ag; B = Ay/Ag = 90.25,0.5, 1 and 2.
When the other accelerograms were used, the maximum ground acceleration was
adjusted being anti-proportional to their spectral intensities (SI), so that SI
for all the accelerograms becomes equal (Ref 3). As a result, the maximum
accelerations for the same strength of structures were in the ratio,
1:1.03:0.55:0.60 for the El1 Centro, Taft, Hachinohe and Tohoku records.

The response spectra for the ductility factors, £ , and the cumulative
plastic deformation ratios (Ref 4), =, in all the models are shown in Fig 8 for
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the case of lowest yielding strength ( 8 =0.25). Although the four input
accelerograms are not specified explicitly in the figure, the spectral values
for £ and n (drawn in slender and bold lines) are fairly close and are
expressed approximately by straight lines in the full logarithmic scale. Based
on - the relative relation of #n to x , we made three classifications; 1) 7
takes greater (negative) slopes than ¢ (Bi-linear, Ramberg-Osgood), 2) 7 and u
are approximately parallel, which implies that the ratio, 7/u , becomes constant
(D-tri, Takeda) and 3) 7 and g take similar values (Slip, Origin, Max-D).

ESTIMATION OF STRUCTURAL DAMAGE

As shown in Figure 8, the response spectra for £ and 75 are expressed in
the full logarithmic scale by straight lines;

log(y) = a log(T) + b, (or y = 16° T2 ) (1)

in which y stands for # orn, and a, b are constants. Although they deviate
from straight lines as the yielding strength increases ($8=0.5 in Fig 9), lines
tangential to the spectra in the lower right region exist where y is small.
Applying the least square technique to the relevant part of the spectra, we
calculated the values of the unknown constants, a and b, individually for g and
n . (see Table I for 8= 08.25, 0.5).

The - dependence of the ductility factor, # , on the period, T, of a
structure also can be deduced from Newmark's standard spectrum for linear
systems and the laws of 'constant strain energy' and ‘constant displacement
response’ in the elastic-plastic response analyses of structures (Ref 5),
applicable to the short period range (less than 0.5 sec) and moderate range
(less than 2.5 sec). The period ranges coincide with the ranges in which
acceleration and velocity responses take constant values in Newmark's standard
spectra expressed in the tripartite logarithmic scale.

a) for short period range (T<0.5 s)
Ay/he = 1//21-1 or J7 @.5[(Ae/myf +1]= const. (2)

where Ae is the maximum response acceleration of linear systems and Ay 1is the
yielding acceleration of non-linear models.

b) for intermediate range of periods (8.5=T=2:5)

To 1incorporate the normalized yielding strength of structures with the
spectral intensity (SI), we made the following approximations:

V=wée =x¢Ay/w = p Ay T/(27 ) = const.

2.5
SI =f VAT = 2.4 Ay T/(27) or w= 2.6 SI/(Ay T) (3)
0.1
If we replace the angular frequency for the initial stiffness, w, by the
angular frequency determined from secant stiffness at the maximum responses, w
=w//zz, the last equation is rewritten;

©=6.9 (SI)2 /(ay T)2 (4)

Substituting the values used for SI and Ay (SI=52.95 cm, Ay =49 and 98 gal)
in eq 4 and transforming the anti-proportional constants to ~the logarithmic
forms, we get b=0.9 for B =0.25 and b=0.3 for B8 =0.5. It was difficult to
derive any formula such as (4) independently with which to estimate the
cumulative plastic deformation ratio, 7. We made only a rough estimation in
relation to the expression (4) for ductility factors.
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Referring to the numerical values for a and b (Table 1), the semi-empirical
formulas for estimating the measures of structural damage, g and » , for the
three Groups of hysteretic models are

Group I (Bi-linear, Ramberg-0sgood models): ® = lﬂb T'l. 7 = 10b+0.5 T’3
Group II (D-Tri, Takeda models): r = 10° T2, 7 = 190*9-5 -2
Group III (Slip, Origin, Max-D models): ¢ = 10 T2, 7 = 18P T2

in which b is defined by 6.9 (SI/Ay)z.
VERIFICATION OF BASIC ASSUMPTIONS

Validity of the expressions (2) and (4) depends greatly on the fundamental
assumptions made in their derivations; the laws of constant strain energy and
constant displacement response as well as the Newmark's standard spectrum.
Historically, these empirical laws were deduced mainly from the analyses for the
elastic-perfectly plastic models and have not been verified for the other
Hysteretic models.

Fig 3 compares ductility factors for short period structures (T=0.1-0.6),
determined from elastic-plastic analyses (denoted by four types of 1lines for
different accelerograms) and those estimated by eq (2) (denoted by four kinds of
marks). The calculated ductility factors were expressed by straight lines with
a negative slope on the full logarithmic scale for the structures with extremely
low yielding strength (a). They become bounded as the yielding strength
increases (b), and take almost constant values for the structures with
relatively high strength (¢). As the ductility factors estimated by eq (2) are
almost constant in the short period range, there exists a large discrepancy
between the calculated and estimated values especially for the structures with
very short periods (T=0.1, 0.2) and a low yielding strength. Then, the
approximate expression (2) is only valid for the structures with relatively high
yielding strength, i.e. 8=1.0, and for the relatively stable hysteretic models
(Groups I and II). For Slip models, there still exist large differences between
the calculated and estimated ductility factors by the order of 10 times even for
the cases of 8 =1.0, and the law of constant strain energy fails for this type
of hysteretic models which have extremely poor capacity for plastic strain
energy absorption. :

Fig 4 verifies more directly the validity of laws of (a) constant strain
energy and (b) constant displacement response. For short period buildings
(T=0.4 sec), yielding strength versus maximum displacement curves deviate from a
hyperbolic curve, being represented by Bi-linear models, at high strength levels
(Fig 4 a). This tendency is stronger for Slip models than for D-Tri models.
For buildings with the natural period of 1.0 sec (Fig 4 b), the law of constant
displacement response hold fairly well for Bi-linear and Slip models. A large
increase at low yielding strengths in D-Tri models is due to our choice of
secant modulus in defining natural periods of structures. It is observed in Fig
5 that the law of constant displacement response hold for D~Tri models in the
longer period range (T=2.0, 3.0 sec).
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Fig 1. Response spectra for the ductility factors (thin lines) and cumulative
plastic displacement ratios(bold lines) of different hysteretic models
for the yielding strength B = 0.25. The different lines represent ind-
ividual accelerograms. The mean tangential lines are shown by the bold
straight lines.
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Fig 2. Response spectra for the ductility factors (thin lines) and cumulative
plastic displacement ratios(bold lines) of different hysteretic models
for the yielding strength g = 0.5. The different lines represent ind-
ividual accelerograms. The mean tangential lines are shown by the bold
straight lines.
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Table I. Numerical values

# 1 of constants a and b in
—_a b —a b equation (1) determined
Hysteretic » from the straight lines
mode 025 05 025 0S5 025 05 025 05 in Fig 1 (B=0.25) and 2
( 8=0.5)
Bi-linear 14 09 08 04 29 27 15 09
Slip -8 19 10 06 22 22 11 07
R-O 12 111 07 04 29 25 14 08
Takeda 18 16 09 04 23 23 14 09
Origin 20 21 12 08 22 21 09 06
D-tn 221 18 09 03 22 22 14 09
Max-D 21 1-8 11 06 28 22 12 06
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c) Cases for high'yielding strength (8=1.0)

Fig 3. comparison between the ductility factors determined from elastic-plastic

analyses lines and the approximate expression (2), (marks).

Different lines and

marks indicate four input ground motion (——,{®: EL-CENTRO NS,——, A: TAFT EW
=+ :HACHINOHE EW;,—--— WXt TOUHOKU NS).
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Fig 4. Yielding strength VS maximum displacements curves for Bi-Linear, Slip and
D-Tri models. The highest yielding strength indicates the elastic responses.
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Fig 5. Qualitative comparison of the laws of constant strain energy and constant
displacement response for D-Tri model. Each line indicate different ground moti-
ons { ¢ EL-CENTRO NS,—-—: TAFT EW,—-—: HACHINOHE EW,—-~—: TOUHOKU NS).

V-152



