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SUMMARY

A method is proposed in this paper for evaluating earthquake responses and
damages of structures by means of the "Ultimate Response Analysis (U.R.A.)", for
the generalization of earthquake response and damage analysis. In the case of a
single degree of freedom system (Fig.l) with bi-linear restoring force charac-
teristics of positive, zero, and negative plastic stiffness (Fig.2), a procedure
is presented to estimate the maximum response displacement and damage factor by
means of U.R.A..

INTRODUCTION

In order to clarify the ultimate earthquake response characteristics, the
authors have proposed the "Ultimate Response Analysis (U.R.A.)", which can
evaluate not only earthquake responses but also damages of structures. U.R.A.
consists of the "Pulse Response Analysis (P.R.A.)" (Refs.l,2) and the "Finite
Resonance Response Analysis (F.R.R.A.)" (Refs.3-5). In U.R.A., the response be-
haviours of structures are divided into two limit response states, i.e., the max-
imum monotonic response (Fig.3) and cyclic resonance response (Fig.4). The
ground motion is given as a trapezoidal spectrum in four-way-log plane such as
shown in Fig.5 (Ref.6), where T, and T~ are considered as predominant period of
building site and of epicenter respectively. The object of this paper is to es-
timate the maximum response displacement and damage factor by means of U.R.A..
The results of U.R.A. are compared with those of the usual dynamic time-history
earthquake response analysis (E.R.A.), and the usefulness of U.R.A. is discussed.

ULTIMATE RESPONSE ANALYSIS

Pulse Response Analysis (P.R.A.) When a single degree of freedom system is
given shocks by the maximum ground motion, the system will collapse with a very
large monotonic deformation. Such a type of response as shown in Fig.3
(Refs.1,2) is analyzed by P.R.A.. In this paper, the followings are assumed
(Ref.2); (1) input pulse amplitudes v_(rectangular)=v_(sinusoidal),
(mn/2)a_ (rectangular)= o _(sinusoidal), (2) 'Il-)—-l;t , (3) initial ‘velocity V,. In
P.R.A:; the response disp&acement by input velocigy pulse (V-P.R.A.) and by input
acceleration pulse (A-P.R.A.) are calculated respectively. When the system is
shifted to the point P(x=x_) by rectangular input pulse(Fig.3), velocity pulse
response spectrum (v _-4t prelat:ion) and acceleration pulse response spectrum

((TT/Z)OLP~Atp relationg arpe calculated and plotted in the same figure with the
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earthquake ground motion spectrum (Fig.6). The (vp—Atp)relation and ((”/2)“p_

4tp)relation are reduced to
X
QJDpdx//KVO+vp)2—(2/m)A(x) =4tp -(1)
0
4[ Pax//Ta 2—(2ImIACOTTE =4t ~(2) .
0 7 /2)V2)/( )p A(X)=J £(x)dx -(4)
.xp:(A(xu)—(m ) O) mﬂp __(3) 0

When these spectra are tangential to the earthquake ground motion spectrum as
shown in Fig.6, there are x, by V-P.R.A. and x, by A~P.R.A.. The x_, x, are con-
sidered to be the possibie maximum monotonic response displacements. The
earthquake ground motion spectrum is a trapezoidal spectrum approximated from the

pseudo-velocity response spectrum with a damping ratio h=0.2, when A ., vmax’

Doy in Fig.6 are considered to be nearly equal to the maximum acceleration,
ve?ocity, displacement amplitudes of the earthquake ground motion respectively
(Ref.7).

Finite Resonance Response Analysis (F.R.R.A.) When a single degree of freedom
system is subjected to random waves, it tends to select from the input waves with
the same period as its own and to reach the resonant state as shown in Fig.4, and
such a type of response is analyzed by F.R.R.A.. By regarding inelastic hys-
teresis response as an equivalent elastic response (Fig.4), its displacement
amplitude x, is calculated. In Refs.4,5, the finite resonance velocity capacity

X a
is reduced to

vo=(5/6mA_(x )//mx £ +(2/3 Wx_E_/m=Ch, -(5)

When a displacement amplitude X, is assumed, the velocity value v_ is calculated
by Eq.(5) and the equivalent elastic period Teq is calculated by the equation.

Teq=2m/mxa/fa ~6)

In. Egs.(5)(6), f_ is a force amplitude corresponding to x, (Fig.4). For various
x,, the (Vo"Téq? relation is calculated and plotted as a spectrum in the same
figure with the earthquake ground motion spectrum, and the possible displacement
amplitude x, is given by their intersecting point (Fig.7). The earthquake ground
motion spectrum is a trapezoidal spectrum approximated from the pseudo-velocity
response spectrum with a damping ratio h=0.473, when the approximate amplifica-
tion ratio B=37m/(5wh+2) (Refs.4,5) is equal to unity.
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Ground Motion Spectra
RESPONSE EVALUATION

The following three earthquake ground motion accelerograms are used.
1) E1 Centro 1940 NS, o __ =342 (cm/sz) t,=15.00 (s), (Ref.8)
2) Taft 1952 NS, o"*=153 (cm/s?), t,=15.00 (s) (Ref.8)
3) Hachinohe 1968 NS, oo =248 (cm/s?), t,=40.00 (s) (Ref.9)
O ax is the the maximum Xground acceleration amplitude, and t, is duration time.
The ‘earthquake ground motion spectra for U.R.A. are shown in Fig.8. Some ex-
amples of response displacement for the earthquake of El Centro are plotted in
Fig.9. With positive plastic stiffness (n=0.2), as shown in Fig.9.1-(a)-(c), Xp
by E.R.A. is nearly equal to x, by F.R.R.A.. With zero plastic stiffness (n=0),
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as shown in Fig.9.2-(a)-(c), x, by E.R.A. is nearly equal to or somewhat smaller
than x_ by V-P.R.A.. In the case of (c), when T, (s) is relatively short, x_ by
E.R.A. is nearly equal to by A~P.R.A.. With negative plastic stiffness ?n——
0.2), as shown in Fig.9.3-(a)-(c), x, by E.R.A. is nearly equal to x, by E.R.A..
In the case of earthquake of Taft and Hachinohe, the similar resd)lts are ob-
tained. The relations, like a contour line, of elastic period T, (s) and yield
seismic coefficient , are shown in Fig.10 for the earthquake of eEl Centro, that
the response displacement X,, X, X, are constant respectively. In Fig.10(a)(b),
upper lines mean that_xa, Xps X=Xy, middle lines mean that x_, Xp» xu=10x , and
lower lines mean that X, X, xu=180x . In Fig.10(c), upper fines mean that xg,
Xy, X,;=X,, and lower lines mean x_, =xp which is collapse displacement. With
positive “plastic stiffness (n=0.2), as shown in Fig.l10(a), the range of value X
by E.R.A. is 1likely to that of x, by F.R.R.A.. With zero plastic stiffness
(n=0), as shown in Fig.10(b), the range of value x_ by V-P.R.A. shifts to the
safe side range of by E.R.A.. With negative plastic stiffness (n=-0.2), as
1s)hcﬁx«m in Fig.10(c), ?ﬁe range of x; by E.R.A. is likely to that of Xy by V-
R.A..

DAMAGE EVALUATION

The damage of the system caused by earthquake is considered to be divided
into two types. One is monotonic damage by very large monotonic deformation,
which falls into so called first passage failure, the other is cumulative damage
by cyclic deformation, which falls into so called fatigue failure. The monotonic
damage is assumed to be calculated by Egs.(7)(8).

(by E.R.A) DR = ((x-x)/xp)®  (Fig.1l) -(7)
(by P.R.A.) DE = ((x,-x )/ xp)® (Fig.12) -(8)
D[;, D are damage factors, and xp 1s an assumed value of monotonic failure
deformation. xp=10x, in case of Fig.2-(a)n>0,(b)n=0, or Xxp=xg 1in case of
Fig.2(c)n<0. b is a constant, in this paper b=l. The cumulative damage is as-

sumed to be calculated by Egs.(9),(10),
(by E.R.A) DS = (1/2)§(Axp./xF)a (Fig.11) -(9)
(by F.R.R.A.) D nC(Axpa/xFia (Fig.13) ~(10)
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Dg, Dg are damage factors, and xp is the same in case of Eqs.(7)(8). a is a
constant, in this paper a=2. n. is the number of cyclic responses by F.R.R.A.
and is given by the following equations.
n. = tg/(Teq-Te) -(11)
log(tP) = -1.5610g(Ky)-1.60 -(13)

t, is a duration timé of predominant ground motions. t 6g is a summed time in
which the acceleration |a|>0.06g (g=980 (cm/s?)) as shown” in Fig.l4. tP is a
non-dimensional constant given by Eq.(13) which is the same to Eq.(28) in Ref.5.
When damage factor is equal to or larger than 1, the system collapses.
Monotonic damage factor DT by P.R.A. is considered to be nearly equal or larger
than DE by E.R.A., judging from the results of response evaluation. Damage fac-
tors Dg, Dg by E.R.A. for the earthquake of Hachinohe are calculated and the
results are shown in Fig.l5. When Dg is larger than DT, the symbol "c" or "#"
are plotted. With negative plastic stiffness (n<0), as shown in Fig.15(c), there
is not such symbols as "c", "#", so that, in these cases, cumulative damage is
not required to be discussed. Then, in the case of n>0 (Fig.2(a)) and n=0
(Fig.2(b)), cumulative damage factor DS and DS are plotted in Fig.16. DS by

F.R.R.A. is larger than Dg, so that g by F.R.R.A. belongs to be in sa?ety
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side. The reason of the result is that the F.R.R.A. is an analytical method to

calculate the possible largest displacement amplitude.

CONCLUDING REMARKS

Judeine from Figs.9,10,15,16, the followings are concluded: )

(1) Wher? tﬁe respoéie displacement amplitude x, by F.R.R.A. is s%alﬁfrk ;hzn
yield deformation x,, then the maximum response displacement, x, by F.R.R.A.
i i minant. _
Eg;gEAZEIZ) ﬁir%?ig?R.A. is larger than x,, the maximu@ resPonse displacement is
predicted, by x, by F.R.R.A. with positive (n>0) plgstlc stlffness, and X, by V-

P.R.A. with zero (n=0) and negative (n<0) plastic stiffness (Figs.9,10).
(3) The monotonic damage factor is expected to be predicted by DT by VfﬁgR.A.. )
(4) When the structures have positive (n>0) and zero (n=0) plast1c(§t1f ness, the
cumulative damage factor is predicted in the safe s%de by DS by F.R.R.A.
(Fig.16). When the structures have negative (n<0) plastic stiffness, monotonic
damage factor is predicted by D by P.R.A. (Fig.15(c)). '

The maximum response dispfgcement and monotonic or cumulative damage factor
are predicted by our proposed U.R.A..
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