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SUMMARY

In this paper, Lanczos method is applied to different types of structures
to show the effectiveness of the method in the dynamic analysis of structures.
The structures are analyzed by the following four methods, namely the classical
mode superposition (CMS), the Lanczos Mode Superposition (LMS), Wilson-0
step-by-step integration method and Lanczos Wilson-6 step-by-step integration
method. The displacements are compared using these four methods. The results
show that the Lanczos method is a very powerful and efficient method in
determining the frequencies and mode shapes of the structures, but when the
displacement response analysis of structures is needed, the method should be
applied with special considerations.

INTRODUCTION

Different methods can be used in the analysis of the response of structures
subjected to dynamic loads. These methods require the determination of the
eigenvalues and eigenvectors of the generalized undamped eigenproblem of the
equations of motion. There are different algorithms presently used for
determining eigenvalues and eigenvectors such as Householder Method (Ref.l),
Determinant Search (Ref.2) and Subspace iteration (Ref.3). Recently the Lanczos
algorithm has been used for the solution of structural eigenvalue problems
(Ref.4). The use of Lanczos co-ordinates has been suggested by Nour-Omid and
Clough (Ref.5 and 6). In this paper, the Lanczos method is applied to dynamic
analysis of structures and the results are compared with those of the classical
mode superposition and Wilson—-8 step-by~step integration methods.

FUNDAMENTAL EQUATIONS
The equations of motion for a structural system can be modelled by a
discretized system and car be expressed in terms of joint displacements U and

their derivatives U0 and U as
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in which M, C, and K are the mass, damping and stiffness nxn matrices
respectively, f£(t) 1is the externally applied load vector. For simplicity the
undamped vibrations are comsidered.

The Lanczos algorithm used in the analysis is the one given in (Ref.5).
Using the following coordinate transformation

U=g9 X(t) (2)

and the orthogonality properties of Lanczos matrix gm’ equation (1) takes the
form

T =g *)

in which Em is a tridiagonal matrix, I is the identity matrix and gm=g$MK-lf,(m<nL

For comparison purposes, the equation (1) is solved using the classical mode
superposition and Wilson-f step-by-step integration method. Equation (3) is
also solved by applying the mode superposition and Wilson-f step-by-step
integration methods.

EXAMPLES

Two examples are considered in comparing the results obtained by different
methods.

Example 1

The 5-degrees of freedom system shown in Figure 1 with properties given in
Table 1 has been analyzed by four different methods. In applying the Lanczos
mode superposition and Lanczos Wilson-8 step-by-step integration methods five
vectors have been used. Fewer number of vectors than five yielded displacements
which are somewhat different than the ones obtained by the classical mode
superposition and Wilson-§ step~by-step integration methods. The displacements
at the top level are given in Table 2. The time increments are taken as
At= 2T/19 in which T is the first fundamental period.

Table 1 Properties of Example 1

A SN @ —5 Member Length Moment of Inertia Mass
Number (cm) (cm?) (t sec?/cm)
1 300 48020 0.11841
S6t, @ —y 2 300 39220 0.11841
3 300 39220 0.11841
721 4 300 31400 0.11841
== ? —3 5 300 31400 0.07894
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Table 2 Displacement Us(t), cm

t(sec) CMS and LMS Wilson~6 Lanczos
with 5 vectors Wilson-6
0.122 0.943 0.912
0.244 2.848 2.813
0.366 5.046 4,945
0.488 6.698 6.613
0.610 7.213 7.141
0.732 6.024 6.233
0.854 3.796 4.155
0.976 1.757 1.930
1.098 0.345 0.526
1.220 0.305 0.325
1.342 1.716 1.407
1.464 4,140 3.484
1.586 6.053 5.669
1.708 7.073 6.958
1.830 6.755 6.857
1.952 5.039 5.508
2.074 2.614 3.446
2.196 0.789 1.408

Example 2

The building with flexible beams having 30 degrees of freedom shown in
Figure 2 is considered as a second example. The properties are given in Table 3.

Mass at top story joints= 0.039470 t secZ/em
each

2
5
12t, ; 1 ® JG:_,A Table 3 Properties of Example 2
(6 @ Beam lengths = 6 m
U Column heights= 3 m
21 {‘%}7 @ (,&510 Moment of Inertias
9 O @ © I.=I.= 125120 c:tn4
14 : 17 L 15700cm”
A ©) G T37Tasl=1;5111=11,= 15700cm
B B3 18 I,=I,=I..=I.,=19610 cm
87797713714 .
st @ 10715 e 5
== &—*22 Mass at each joint = 0.059205 t sec”/cm each
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The numerical results for displacement U,, U and U are shown in Figures 3,

4 and 5. In calculating these displaceménts Seven LiRczos vectors are used
which give very good results as compared to CMS. Higher number of vectors
yield displacements greater than the values obtained by CMS. The numerical
values are given in Tables 4,5 and 6. The classical mode superposition method
and Lanczos mode superposition method with 7 vectors have a very good match
while Wilson-6 step-by-step procedures applied to equations (1) and (3) yield
results which are also close to each other.
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Table 4 Displacement Ul(t), cm

t(sec) CMS LMS with Wilson-© Lanczos
7 vectors Wilson-60
0.258 4.167 4,162 3.839 4,027
0.516 13.592 13.578 13.164 13.248
0.774 24,409 24,391 24,003 24.032
1.032 33.193 33.177 32.421 32.425
1.290 34.945 34,936 35.058 35.052
1.548 39,205 29.203 30.213 30.205
1.806 19.277 19.275 20.331 20.321
2.064 8.276 8.276 9.750 9.741
2.322 1.081 1.062 2.266 2.257
2.580 1.406 1.388 0.897 0.887
2.838 8.354 8.343 6.587 6.578
3.096 19.014 19.011 16.863 16.854
3,354 29.557 29.558 27.207 27.197
3.612 35.029 35.023 33.713 33.703
3.870 32.807 32.798 33.874 33.865
4,128 24.666 24,647 27.351 27.342
4,386 13.619 13.609 16.834 16.825
4,644 3,738 3.739 6.866 6.856
Table 5 Displacement U13(t), cm
t(sec) CMS LMS with Wilson-8 Lanczos
7 vectors Wilson-8
0.258 2.067 2.059 1.948 2.062
0.516 8.241 8.226 7.989 8.030
0.774 15.838 15.825 15.368 15.378
1.032 20.914 20.904 20,822 20.818
1.290 22.173 22,165 22,127 22.120
1.548 18.903 18.899 19.224 19.216
1.806 11.914 11.907 13.010 13.001
2.064 4.863 4 .845 5.827 5.817
2.322 0.554 0.539 0.927 0.918
2.580 0.361 0.355 0.303 0.294
2.838 4.879 4,874 3.925 3.916
3.096 12.186 12.177 10.396 10.387
3.354 18.715 18.746 17.292 17.283
3.612 22,157 22.144 21.614 21.605
3.870 21.156 21.143 21.534 21.525
4.128 15.611 15.608 17.294 17.285
4.386 8.153 8.154 10.620 10.611
4,644 2,231 2.313 4,065 4.056

CONCLUSIONS

Eigen problem of equation (3) is usually solved not for all eigenvalues n,
but is truncated to a value m where mép. It is found that choosing m. as twice
the eigenvalues desired yields good results. For determining the displacements
a special care has to be exercised as to the number of Lanczos vectors used.

From the examples above, it can be concluded that in using modal superposition on
equation (3), one may take the number of modes as half of the Lanczos vector m.
The method has to be tested on a system with number of degrees of freedom much
higher than the ones considered in this paper.
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Table 6 Displacement U25(t), cm

t(sec) CMS LMS with Wilson- Lanczos
7 vectors Wilson-
0.258 0.449 0.441 0.422 0.459
0.516 1.675 1.666 1.537 1.547
0.774 3.291 3.286 3.241 3.243
1.032 4,359 4.356 4.300 4,297
1.290 4,501 4,493 4.526 4,521
1.548 3.963 3.962 3.961 3.951
1.806 2.477 2.477 2.722 2.716
2.064 0.887 0.881 1.181 1.176
2.322 0.212 0.207 0.151 0.146
2.580 0.039 0.042 0.088 0.083
2.838 0.893 0.892 0.811 0.806
3.096 2.636 2.632 2.113 2,108
3.354 3.792 3.792 3.568 3.563
3.612 4.500 4,496 4,448 4.480
3.870 4.477 4.469 4,427 4,422
4,128 3.121 3.117 3.552 3.547
4,386 1.653 1.652 2.206 2.201
4,644 0.547 0.537 0.836 0.831
ACKNOWLEDGMENTS

The author would like to give his special thanks to his graduate assistant
Miss Siimran ILHANTEKIN for helping to provide the numerical examples presented
in this paper.

REFERENCES

1. Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford, (1965).

2. Bathe, K.J.and Wilson, E.L., "Large eigenvalue problems in dynamic analysis",
ASCE J. Engng Mech. Div. 98, 1471-1485, (1972).

3. Bathe,K.J., and Ramaswamy,S, "An accelerated subspace iteration method",
Comput. Methdos in Appl.Mech. Engng, 23,313-331, (1980)

4. Geradin, M.,"On the Lanczos method for solving large structural eigenvalue
problems", ZAMM, 59,T127-T129,(1979).

5. Nour-Omid,B., and Clough,R.W., "Dynamic analysis of structures using
Lanczos coordinates, J.Earthquake Engng Struct. Dynam. 12,565~577, (1984).

6. Nour-Omid,B., and Clough, R.W., "Block Lanczos method for dynamic analysis
of structures'", J.Earthquake Engng Struct. Dynam. 13,271-275, (1985)

V-22



