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ABSTRACT

Response Spectrum approach using "mode acceleration" of structural dynamic
instead of commonly used "mode displacement" is developed to obtain mean square
response of structure subjected to six correlated earthquake components by using
relative velocity and relative acceleration spectra of principal components of ground
acceleration as input. This approach proves its priority over other methods when
using only a first few modes. The formulation is such that the methodology of obtain-
ing the Worst-Case response irrespective of the structural orientation can be used.

INTRODUCTION

For the calculation of seismic design response of classically damped structural
system subjected to multicomponent excitations, the method of Square Root of the Sum
of the Square (SRSS) of modal response using mode displacement of structural dyna-
mic is commonly used. Often in these approaches, only a first few modes are used in
the analysis, as usually the higher modes do not contribute much to the response.
However, there are situations involving certain response quantities or certain struc-
tures where the contribution of the high frequency modes can not be neglected without
affecting the accuracy of the results.

To improve the accuracy of the results with only a first few modes, Singh and
Mehta (1,2 ) have developed an alternative response spectrum approach for the calcula-
tion of design response for a single excitation component. This approach is based on
the "mode-acceleration" method of structural dynamics. It requires the seismic inputs
to be defined in terms of relative acceleration and relavtive velocity spectra. Herein,

a SRSS approach based on the method of mode acceleration is developed for the calcula-
tion of design response of structures subjected to the six components of earthquake
excitation. This formulation also include the effect of the three rotational components

of excitation which are commonly neglected "as being of minor consequent" in seismic
analysis. Here basically the Newmark approach[’3 Jused by Ghafory-Ashtiany and
Singh {4]) to obtain the characteristics of the rotational components.

Here, the procedure of obtaining the Worst-Case response irrespective of the
direction of the impinging ground motion developed by Singh and Ghafory-Ashtiany (5}
is briefly described. The numerical results are also presented to demonstrate the
advantage of the mode acceleration formulation over the common mode displacement

formulation {6] .

DESIGN RESPONSE )
General equations of motion for MDOF structral system subjected to six components

of earthquake are as follows :

M {4} + € {4} + Ki{w=-M [r] {E"(t)} (1)
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where[M]1,[ C],[K]are mass, damping and stiffness matrices, {u L= relative displace-
ment vector; [ r]1= the influence coefficient matrix (Nx6) wﬁith its 2th column,{ry},
being the ground displacement influence vector for the ot components, and {E% is
vector of six components (3 translational and 3 rotational) of earthquake defined in
terms of 3 principal components of earthquake as [ 6] :

’ d
{E"()} = (16,) + 55 3¢ (6,1 [pJ{E(t)} (2)

where [D ] is matrix of direction cosine,{E(t)} ={X; X, ¥;}is vector of principal
component of earthquake, c is shear wave velocity and [Gj]and [ G,] are constant
matrix of transformation defined as :

0 1 -1
[Gl] = [ [1] : [0] ], [G2] = [ [0]: -1 0 1] (3)
1 -1 0

where [I1 is 3x3 identity matrix and [0 ] is 3x3 null matrix.

Modal analysis approach is used for evaluation of design response in terms of
ground response spectra. Using normal mode shapes, equation of motion will be
decoupled to :

: v . 2 T, 7
+ . = -

LARELICR R by Ew (4)
where Vj=jth principal coordinate of modal displacement, w~=jth natural frequency,
B'=jth modal damping ratio,{Y;}= jth vector of participation factor, defined as

05 ={v5}T MI{r }/ms, and'm.=j'h modal mass. Common mode displacement
approach obtains V; from the solution of the Duhamel integral, but for mode accelera-
tion method, V; is defined in terms of the modal velocity and acceleration. Thus a
response quangity which is linearly related to displacement can be defined as :

N T . . . - 2
= -~ . . t 28 .w.V, V. . 5
s(t) §=1 Ej[{*{]} {E@®)} + BlogVs + v 1/ (5)
where Cj is response mode shape.

. 2 2 .
To obtain the design response (S”g), mean square response, Ex[ S (t)], is
required, which, in turn, gan be obtained from autocorrelation function of S(t) .

S T ’ ’ T
Ex[S(t)s(ey)] =2 ) Ty gy [yl Bxl {E(e] {E(e))7) v, }

T , . . N
+ {Yj} (2BkwkEX[{E(tl)}Vk(t2)] + Ex [{E(tl)} v, (€)1 )

T ’ . A .
+ {Yk} (2ijj Ex[{E(tz)}Vj(tl) 1+ Ex[{E(tz)} Vj(tl)] )

5 kEx[Vj(tl)Vk(tz)] + Ex[vj (tl)vk(tz)]

+ 4ij3kw.w
. . . o P
+ 2805 BV (£))T) (£,)] + 28,0, EX[V, (£)) V,(e)] ] . (6) .
Substitufing for auto-and cross-correlation terms in above equation [6] and assuming
the input and output process to be stationary, the design response can be as :

2 .3 (a7 ta;} 7

where{d g} is direction cosine and [Rg ] is response matrix for 2th excitation. An

element of response matrix is defined as :
I gz el T a2, +T A2 3
=1 k=1 ik T3k Imnjk “gf 2mnik “gf

bYl

]
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¥ 3 2 L R%, 45 R, +F RS, +F_p2

+3 T (@ T /o) T gk F1Rvas 2%ty 3 vk 4 akk 5Bgg!
=1 x=3 ' 2 Lp R% 4P.RS, 4F R, +F_a2

T gk F1Runs FoRaty F3foa e an sty )
2 2 2 2

+F_R +F R
+r3mnjk[F1RvJLj+F2Ralj 3 vik "4 a2k+F5AgQ,] (8)
where Fl s F2 ..... and F5 are defined in Ref. 7. Agg=peak ground acceleration,

Agy = maximum rate of change of ground acceleration, Ry j and Rag j are, respective-
ly, relative velocity and relative acceleration response spectra of gth earthquake com-
ponent for @j and Bj. Iimnjk, Txmnjk and 3mnjk are defined as :

rlmnjk = ij Ynk * Ynj Ymk

6 6 2
. )/4C
T (Y s qu + Yq] ka /

=3 z G G
2mnjk p=4 g=4 2mp 2nq PJ
6

- -% .G, _ (¥
(ij Yok Ynj ka) &=4 “2nq

ij

g Vg Tmd172¢ @

r qaj

= [Z G
3mnjk [p=4 2mp

No special advantage is gained by this approach if Eq.8 is going to be used for
exact evaluation of R gmn since it also requires complete sets of modes, especially for
the evaluation of the first two terms. The following analysis show that the first two
terms can be obtained from the following psuedo static problem :

(xl{u} = ] [x] (£} (10)

where {ug} = a vector of the time dependent displacement obtained as a solution of
Eq.10, the psuedo static response quantity, S(t), in terms of {ug} is :

s(t) = {kj}T {u_} (11)

Expanding { ug}in terms of {¢j} , the modal vector of Eq.1, and obtaining the coefficient
of exponsion from Eq.10, S(t) become :

s(t) = ) o, (v} Elo) ) /w2 (12)
3=1 3 J j
with a similar approach the design psuedo static response can be written ag :

2 _3 T __(s)
sd—Eﬂ_wﬁ (Rg 1{ap} (13)

where [Ry (s) is psuedo static response for 2R = excitation which can element of the
matrix can be written as :

R(S) =I)\:] I)\:I (z.C /w2m2) (T A2 +T A ) (14)
fmn j=1 x=1 K ik’ lmnjk “gf " 2mnjk gl

Eq.14 is identical to the first two terms of Eq.8, and can also be obtained by a psuedo-
static analysis of Eq. 10. From Eq. 10 {ug}can be written as :

{fut=2_{u_}E(£) (15)
s p=l "'sp” P
where{ugp } is obtained as a solution of the following linear simultaneous equations :
(xl{u } = )} (16)
the responseunantity S(t) can also be obtained from Eq.15 as :
s1T,_»
=3 . s’ E (t) = {s"V{EW®)} 17
s(t) 51 5% p( ) (17)

where Si,={ ki}{ usp} . Again using Eq.12, the design response of S(t) can be
written in same form as Eq.13, with R ¢\$), of:
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6 4 d .
2 +%C2 (18)

(s) ’
G S A
4 §1=4 2mp S2ng°p°g Pgl

’
=S S_ A

RSLmn m “n gl

6
z
=
It is seen that in the above equation, the first term is associated with the psuedo-static
response for the translatory motion and the second term is due to the rotational effects.

Thus Eq.18 would replace the first two terms of Eq.8. The total response can now be
written as a sum of the psuedo-static and dynamic responses, that is

3
2 _ T (s) (D) 19
Sy = E=l {dz} (Ry1+ (R D) {dz} (19)

which an element of the dynamic response, Rgmn., is same as Eq.8. without the first
two terms. The design response for purely translational excitation can be obtained by
neglecting the terms associated with the rotational effects. The main advantage of this
approach is that only a first few modes are necessary in the calculation of the response,
because the terms associated with Ryy and Ray become small for modes with frequen-
‘cies higher than the input frequency.

WORST-CASE RESPONSE
Eq.19 gives the design response for specific { dg }. However, the orientation of
structural axis relative to the principal component of excitation will never be known
in advance. Here, the methodology developed earlier by Singh and M.Gh. Ashtiany is
used to obtain the Worst-Case response irrespective of the structural orientation. The
procedure is as follows:

Solution of each of the above equation provides three eigenvalues, Ap;, g, and Ags,
respectively, defines the response due to 4B excitation when it is applied along the
{d(D}{a2)Jand { d(3)}directions, where {d()} are eigenvectors of Eq. 20.

To obtain the Worst-Case response a search through 18 possible combination
(6 per each set of eigenvector) have to be made. These possibilities are numerated
in Ref 7. For example one of the combination is :

2 (2),T (2) (3)4T (3) P

S3 = Mgt {a; "'} R’ "'} + {a, 7"} (Ry1{d, ™"} (21)
1

wherel;;is the response due to excitation-1 applied along director {d ( )} , the

second term represents the response due to excitation-2 applied along direction

{ dj(_z) }and similarly for third term.

NUMERICAL RESULTS

The main purpose of this proposed formulation is to solve the problems asso-
ciated with inclusion of high frequency modes in evaluation of design response. Here
some numerical result is shown to support the claim that "using the mode acceleration
approach does not affect the accurracy of response when higher mode get exculed
from the summation process" the input motion, relative velocity and acceleration
spectra, in these analysis are defined in terms of three independent Kanai-Tajimi
spectral density functions representing the major, intermediate and minor principal
excitation components.

To show the advantage of the new mode combination, the three story torsional
structure shown in Fig.1 have been considered here. Each floor has 3 degrees-of-
freedom : two horizontal translation and a rotation about the vertical axis. The re-
sults have been obtained for various structural frequency parameter, W =/k/m=10,33.4
and 50 cps., to represent soft to stiff structures. Table 1 shows the modal frequencies,
damping ratios and participation factors for five earthquake component (2 translational
and 3 rotational) for the system with w=10cps and eccentricity parameter, e/r=0.01.

To show the effectiveness of the mode acceleration formulation, the story shear,
torsional moments and column bending moments design response have been obtained
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with all nine modes (Exact Response) as well as with only first three modes (Approxi-
mate Response) . The results are shown in Table 2 and are in the mg-ft. units. the
mode displacements and the mode acceleration method provide exactly the same value
when all nine modes are used in the analysis and thus the verification of proposed
method. Two types of response values are obtained for each case:

1. The Worst-Case (Maximum) Response "MR". These are shown in columns(1), (3)
and (5) . The values in columns (3) and (5) are shown in the ratio of column (1) .

2. The Response"SRSS", with inputs applied along the geometric axes of the structure,
without making any search for Worst-Case response. Ratio of the these values to the
values of column (1) are shown in column (2), (4) and (68). These results show

that if no search is made for maximum value, the calculated response is approximately
10 to 35% underestimated.

Comparison of results in columns (3) and (5) with values in columns (4) and (6)
clearly show that mode acceleration approach provides more accurate response values
than mode displacement approach for the same number of modes used in the analysis.

CONCLUSION

In this paper a response spectrum approach based on the mode acceleration method
of structural dynamics is developed. The use of such an approach is especially desir-
able if the high frequency structural modes contribute to the response significantly.
In the commonly used mode displacement approach, such high modes must be calculated
explicitly and included in the modal analysis. In the mode acceleration formulation,
these modes, however, need not be calculated explicity, their effect can be included
through a simple static analysis of the structure. The input in this approach must
be prescribed in terms of the relative acceleration and relative velocity spectra of the
ground motion. Again, the formulation considers all six correlated earthquake. The
numerical results, demonstrating the benefits of this alternative formulation, and also
the importance of the rotational components in the calculation of the design response,
are presented.
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Fig. 1 - A MULTISTORY TORSIONAL BUILDING WITH
ECCENTRIC MASS AND STIFENESS CENTERS

TABLE 1: DYNAMIC CHARACTERISTICS OF STRUCTURE IN
FIG.1 FOR e/r=0.01, w= 10cps

Mode | Freq. | Damping Participation Factors in Xy direction
No. cps Ratio X1 X2 X4 X5 XG
1 6.236 .0097 1.44 |-1.44 62.3 62.3 0.03
2 6.237 .0097 1.44 1.44 | -62.3 62.3 0.00
3 8.294 .0050 -.03 0.03 |-1.14 |-1.14 1.57
4 12.79 .0293 -.07 0.07 |-7.29 |-7.29 0.03
5 12.80 .0293 -.07 -.07 7.30 7.30 -.08
6 16.03 .0792 -.04 0.04 -.45 -.45 0.11
7 17.72 .0206 0.67 0.67 | -8.03 8.03 0.00
8 17.72 .0207 0.66 0.66 | -8.03 |-8.03 -.04
9 36.85 0144 -.00 0.00 -.04 -.04 1.52

TABLE 2: BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING MOMENT
OF STRUCTURE IN FIG.1, e/r=.01, w=10 cps.

Exact Response Approximate Response
Value Using 3 Modes By
9 Modes Mode Displc. Mode Accl.
Type Maximum | SRSS | R-Max.|[SRSS | R-Max.|SRSS
of Resp. | Max. | A-Max.|A-Max.| A-Max.|A-Max.
Response (1) (2) (3) (4) (5) (6)
Base Shear in
Xi- Direction | 4,329 | .921 .800 .718 .991 .913
Base Shear in
Xo- Direction 4.329 | .830 .800 .656 .991 .822
Torsional 0.068 | .982 | 430 | .423 |1.000 | .984
Moment
Mom. of Col.1 44 539 | 917 | .s02 | .715 | .991 | .909
in X1- Direc.
Mom. of Col.2 |4y 117 |.834 | .798 | .662 | .991 | .825
in X2- Direc.
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