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SUMMARY

A family of tensorial formulations is shown to be advantageously used for
obtaining better insights into the pointwise multi-D features of earthquake shaking
and structural response. This can be rendered sufficiently general and resorts to
the tensors of RS values or RMS amplitudes by including also the tensors of their
time-domain and/or frequency-domain decomposition. With an interpretation related
to the energy fed into simple oscillators of multi-D isotropy, findings in the
present study are highlighted by sgeometric simplicities characterizing the tensor
fields of response. Examined in addition is practically important but non-tensorial
properties in the pointwise directional dependence of peak amplitudes.

Instructive Equalities For a multi-D time history, {a(t)}, which exhibits its
vectorial nature upon rotating coordinate axes, two matrices of
[P(t,w)l=Re({F(t,)}{F(X,@)I")
with {F(t,@)}=[1 {a(t)}exr(-joty) dt,
P'(t,w,8)] =Re({F'(t,0, ¢ N FX,@.2)17)
. ' _rt _ _ -j{1-¢2
with {F'(t,0,8)} =/ o ({a(t)}exp(-Low (t-t1))) exp(-ji1-8% o t,) dt,
are first introduced. Obviously they prove real, symmetric and non-negative definite
tensors. Physical meaning of each tensor is also clear therein; [P(t,®)]1*72 stands
for the ordinary Fourier amplitude of {a(t,)} truncated at t,=t, while [P'(1,0,
£)1*72 corresponds to its evolutionary (instantaneous) Fourier amplitude weighted
toward t under a suitable choice of the parameter & . With relation to the former
tensor, a multi-D version of Husid plot:

[E(D] =LY fattdHatt)ITdt, (== [P(t,0)] do]

is additionally used. This includes, as its particular case of [E(o0)], the squared
RS or RMS intensity tensors proposed by Arias or Penzien.

Then let another set of two matrices (real, symmetric, non-negative definite and
tensorial) be defined without resorting to the Fourier integral transform but by means
of the motion of isotropically multi-D simple oscillators subjected to {a(t)}:

W(t, @, )] = 5.5 (fa(t) )T + {3t} {a(t)™) dty
[= (3IHEMIT+ 420 L5 @D HARDIT dty + @2 {0} a0} T ]

Wt,e, ) ={dWIHIW}IT+ -dg{({d(t)} {d(t)}™) +@2{d(t)}{d(t)}™
with {d()} + 2w {d(D} + @ 2{d(1)} = -{a(t)}
(notation of {d(t)} used instead of {d(t,w, &)} for brevity)

0f these, (1/2)[W(t,®,Z)] provides a necessary and sufficient tool to represent
the work transmitted into the oscillator until t under the action of {a(t)}. Its
second term of energy dissipation is replaced in [W(t,®w, £)] by a totally different
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appearence of the damping action having no immediate mechanical meaning. With its
insignificant contribution, (1/2)[¥'(t, ®,Z)] equals essentially to the tensor of
kinetic plus strain energies stored in the oscillator at t.

It can be shown that the two groups of tensors are mathematically related one
another by the following strict equalities.

FP wlar,@,8) [Pt 0)]ldes = (L, ©, £)]
. _ (4/m7) 8 @ w2
with w(col,co,é) = (0:2-02)2+42 20 2w:2
[P'(t,w,8)] =W (t,®, )]
®ith definite-integral and limiting properties of
ICw(e,0,8)dw, =1 lin, w(wi,0,8)=8(w,-w)
o §_>0
the role of w(wi,®, &) is understood as a weighting function centered on .= o
in the above integral operation. Actually [W(t,®,Z)] coincides with [P(t,®)]
averaged around @, the smoothing in which becomes more notable according to a larger
damping factor of £ . When noting another definite integral of

3“0—5%;——% for 0¢<1

fsow(cox,m,é)d®=;2c-c(€) where c(g)= 1 for £ =1
'czsz_rh—_lg‘ for £>1

a remaining link of

2¢(L)EMWI=FT Mt 0,4)] do
can be obtained.

As evidenced in the foregoing formulas, the energy fed into simple oscillators
of multi-D isotropy permits to interpret consistently all the tensors of Arias inte-
grated intensity, Husid time-axis growth, Fourier spectral modulus, time-dependent
frequency content and the likes of them. Thus the mathematically defined tensors can
be assigned their individual roles within the framework of structural dynamics. An
illustration in Figure 1 is intended to demonstrate such advantages when applied to
the analysis of 2-D earthquake ground motions. This includes [W(t,®, £)I'72 and
[#(o, ®, £)]1'72 under &= 0.05 as well as [E(o0)]'72. A closed curve at sampled
points along time and frequency axes stands for the locus obtained by tracing the
tip of vectors that specify directional components of tensor. Appealingly the 2-D
characteristics of available energy are seen to differ in complicated features over
the combined domains of time and frequency. These findings highlight the fact that

Holiday Inn record, San Fernando EQ, Feb. 9, 1971 horizontal plane

Sow
M B A s NOOW component (peak acceleration = 250.0 gal) L [E(=)]}/2
Thy ~
{a(t)} [ S90W component (peak acceleration = 131.7 gal) Noow
i e — -
period (sec) 250 cm/sec3/2
50r - = « @ @OHBRQ R EEE R R I I TR
+ c e - & S DBBOH PRORPO S ® ©@ @ % % 8 & & o
-« «o @ e @ Q 2 T TE T T S S S BRI
3.or c Q@ =g Q 8 ¢ % o 0@ ® 0 & 0 o o o o
® 8 Q@ ¢ 2 © o 0 ® o = 8§ 8 s s % 0
2.0F : %%. > » @ ® © & ® o & e o s e o+ o .
DI 3 F ® ® ® ® ® e s s o s o s o s =
e ® » § ? ¢ e e 8 e e e e s .
o TR 4 C ot e, e, 00512 Sy &
CIE L e o o s ®cPe - - . . . @
0.5k @ B @B v e s e e e e e e e e e e horizontal plane @
L - e : : P : e o . e e e e S 90w ® @
.« e . . . .
03k - oot [W'(t,w,0.05)]2/2 . D
« e s 0 e & e e e e e e NOOW B
0.2 « e e s . <
..... \—100 kine ®
. . C e e e e e e e e e e e e e e e e -
0.1 - . - . - - - . . . . . - . . . . . . . - . - - . -
L L n ) TR ) ) L 4 L ti
0 5 1 15 20 25 30 3 a0 45 50 55 ime (sec)
Figure 1

V-222



the overall tensorial measure of [E(o0)] becomes of little use for describing speci-
fic situations of multi-D dynamics.

Complex-valued Tensors The previous definitions of [P(t,w)] and [P'(t,w, )] were
based on deletion of imaginary part in complex-valued matrices. Then a question may
arise concerning what the deleted part implies. Such complex matrices can be condi-
tioned, in general, to be Hermitian and non-negative definite tensors. Furthermore
they were composed of tensor product of vectors in the deterministic instances. The
latter condition of tensor-product decomposition is however not necessarily assumed
in the following, which allows to include stochastic problems.

For a tensorial Hermitian matrix, [R], it goes without saying that its symmetric
real part is tensorial. On the other hand, its skew-symmetric imaginary part is
under different circumstances during rotation of coordinate axes. According to its
component representation of

: P11 Piz +jq12 P31 - jqs1
[R]=|:-p12p_13q12 szp*‘_]Chz :I , [Plz'lthz P22 P23 +JQz3]
2z Pz1 +J4d31 P23 - Jqa3 P33

in 2-D and 3-D instances, respectively, the single component of q,2 in 2-D instances
turns out to be invariant, while the three-component set of (423, 431, qi12) in 3-D
instances, when picked up and arrayed in the current manner, is subjected to
a vectorial transformation. Discussions are henceforth focused upon simpler 2-D
instances due to space limitation.

Among the 4-dof parameters of [R], invariants consist of pii+ P22, P11P22 - P12%
and q;2. Its positive definite condition is given by pi11+ p22 > 0 and piiP22 - p;2?
>q12%. Also this is not positive definite but non-negative definite if and only if
P11 +P22 >0, pr1iP22-P122=q122 and q12 # 0, by disregarding trivial cases that
reduce to 1-D problems. Under the two situations combined, normalization by use of
the principal axes identified for the real-part tensor leads to

_ ) cosy -siny 1 0 cosy¥ siny 0 Jro
[R]'p"‘a““([ siny cosw:”:l) rz][-sinw cosw]+[—jro- 0 ])

= Pmas cosy¥ -siny 1 jro cosy  siny
malor | sinyg  cosy ~jro  r? -siny cosy
where Pmasor(>0), Pminor (>0) and ¥ stand for major and minor principal values and
orientation angle of major axis, respectively, and

r = |[Pminor (0<rsl) g = d12 = = d12 (lo1 £1)
Pmajor JP11P22 - P12 VPmasior Pminor

Without loss of generality, a particular case of ¥ =0 is chosen below.

Decomposition of the above tensor into a tensor product of mutually complex
conjugate vectors:

(R = {v} {7}" {V}=r-—pm,-or{ 1 }exp(j¢)

-jrsgnao

is strictly contingent upon Iol=1, and a single phase factor of ¢ remains inde-
terminate there. On the contrary, its Choleski decomposition:

[Rl=[LI[LIT [L]1 = {Pmasor [ -jlrcr rﬂ—(l—a; ] (: lower triangular)

becomes always possible under the non-negative definite requirement. Associating
this with a stochastic phase vector of exp(jdi) exp(id2)] where ¢, and ¢
are random variables satisfying E [exp(j(é1-¢2))] =10, an alternative expression
of the latter decomposition is given by

[Rl = E[{V}{T17] {V'} = Pmasor { r-jo exp(jd;e;);pf]i_ié'}_z—'_z_ exp(jé2)) }

This indicates that even the tensor-product decomposition can be free from any requi-
site when considering the problem in a stochastic sense. The dimensionless factor
of o is to describe therein the degree of statistical dependence or independence
observed between major and minor components. Restricted to completely dependent
situations of o =*1, only a single phase factor of ¢ is retained which corres-
ponds directly to the deterministic cases. Even though the role of o is totally
inconceivable in deterministic problems save for the ambiguity of its sign (no
more than the relation of q;2 = *{py1p2s - p122 ), such a stochastic extension will
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certainly merit some attentions.

Tensor Fields Consider a multi-D time history, {b(t)}, which is specified by
a linearly combined set of multi-D time histories;

()} == [L(BwWI{:d(1)}

These timelhistories can be either deterministic or stationarily stochastic with
constant rectangular matrices of [:(Bu)]. Then form a matrix of squared RS or
RMS intensity, [Bl, for {b(t)}.

(8] = {ffZZ {B(OIBIT At when {b(t)} is deterministic
E[{b(t)}{b(t)}7] when {b(t)} is stationarily stochastic
z 2 [1(13 wl LRI GBWIT

where [isR1 =0T (id(D}{;d(ITdt  or  E[{:d(1)}{;d(1)}7]
([.iiR]=[in]T)
Such relations of a practical importance are found in multi-D performance of systems
for which the classical modal formulation becomes applicable under a multi-D and
vectorial ground acceleration of {a(t)}. In these instances, {b(t)} stands for
a subset in the multi-D response, {:d(t)} and [i(Bu)] coinciding with the motion of
i-th order modal oscillator of multi-D isotropy and the associated matrix of modal
participation factors, respectively. Following the equation of motion of

LW +2:¢ 0 AW + 102 {:d(D)Y = -{a(t)}
the matrices of [;i;R] (unsymmetric for i#j) are characterized by their tensorial
nature. Still the resulting symmetric matrix of [B] may or may not be a tensor.

With a view to demonstrating advantages in applying the above simple formula,
taken up is a single-story rigid-floor system of two-way eccentricity subjected
to a 2-D ground acceleration. Response of 2-D vectorial drift at an arbitrary point
(x, y) on the horizontal plane is assigned to {b(t)}. The x and y axes are, for
specificity, oriented according to principal axes of its overall translational
stiffness with the origin located on its gravity center. Then

(B = m{ _(:éé"x__yx) }L i€y -iéx | (i=1 to 3)

in which ;€8x =iex/Zm, i6y = iey/im, X =%X/im and ¥y=y/Zm with (iex, iey) and im repre-

senting the position of i-th order modal center of twist and the radius of gyration,
respectively. Substitution of this expression into the preceding formula yields

= Bxx va] = S s . i€y - ¥ B - (.3 _ 3
B[ b B -z 2l (B Ly G-
- 1 L 16y -:8x JLisRI{ %
(l*iéxz*‘iéyz)(l*jéxz +jéy2) ify i€x *3 -jiex
Differing from [:i;R], symmetry upon interchanging indices, ;iA = ;;A, features the
current modal factors of ;;A. A more compact formulation for three components of the
symmetric tensor of [B] is
Bxx = @ (¥ -By/ax)2 + (¥xx - By?/xx)
Bxy = ‘a()_( ‘ﬁx/a)(y 'ﬁy/a) - ('Y'xy - Bx ﬁy/O’-)
Byy = a (X - Bx/x)Z% + (vyy - Bx?/x)
where & = 11A+22A+33A+2 (128 + ,3A+230)
Bx = 1€x11A +28x22A+ 38x 33A
+ (18x +28x) 128 + (18x + 3€x)13A + (285 + 36x) 23A
By =18y 11A+ 28y 224 + 38y 33A
+ (18y +28y)12A + (18y +238y)13A + (28y +38y) 23A
V¥xx = 18y211A + 2892228 + 38y% 33A
+Z(1éy2§y 12A+léy 3éy 13A+2€y 3éy 23A)
Yxy = 18x 186y 11A + 28x 28y 22A + 38x 36y 33A
+(18x 28y *+ 186y 28x) 128 + (18x 38y + 18y 38x) 134
+(28x 38y + 28y 38x) 23A
Yyy =1€x211A *+ 2852 22A + 38x% 33A
+2 (18x 26x 128 + 18x 38x 13A * 2Bx 38x 23A)
Therefore the distribution of [B] on the horizontal plane is seen to be quadratic

where i A
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indicating the existence of a center of response at (Bx/c, By/e«). Upon shifting
the origin of % and ¥ axes to this characteristic point, three components of Byx,
-Bxy and Byy consist, in addition to separately different constants, of only the
single 2nd-order term of §2, %9 and %2, respectively, under a common coefficient of
«. Moreover the parameters of «, Bx, By, ¥xx» ¥Yxy and ¥yy are to be related
simply to the response of modal oscillators reflected upon [i;R].

A closer mathematical examination concerning the tensor field of [B] developed
on the horizontal plane leads to the following finding of interesting rules. ®hen
noting the contour lines drawn by the principal values of pointwise tensors, they form
a family of confocal quadratic curves and, at the same time, a family of orthogonal
trajectories. More specifically the curves for major-axis and minor-axis components
are elliptic and hyperbolic, respectively. Another markedly simple feature becomes
also apparent in the flow lines describing the orientation of the principal axes of
pointwise tensors. Actually the latter can be shown to coincide strictly with the
above family of quadratic curves.

By use of the same ground motion as in Figure 1, results of an example study are
given in Figure 2. The three systems examined therein have an identical relative
stiffness for their coupled lateral and torsional motion, only the absolute stiffness
being designed to provide different fundamental periods of 0.3, 1.0 and 2.5 seconds.
Part (a) is intended to illustrate the 2-D nature of response drifts at sampled
points. Individual closed figures represent directional properties of the RS tensor
of [B]*7% in a similar way as in Figure 1. This includes [;:R]*“% shown on the same
scale for comparisons. More complete data are presented in part (b) which involves
full information on the tensor field by means of the above-noted contour and flow
lines. The geometric simplicities observed there are striking enough to highlight
an advantageous role of the tensor formulation. Numerals discriminating each contour
line stand for the increasing or decreasing factors compared to the major-axis
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component in [,;R1'72, thus clarifying the effects of torsion.

Peak Amplitudes The current tensorial approach is indeed quite useful for under-
standing important trends behind a messy appearence of the pointwise directional
characteristics in multi-D response and their spatial distribution. However this
does not necessarily comply with the conventional notions in the practical design of
earthquake-resistant structures. From the latter standpoints, envelope of Lissajous’
locus including the associated rotational properties in orbital motion, for example,
may be more preferable instead of the RS or RMS tensor. With such lines of extension
inmind and by keeping still a straightforward relation to the tensorial understanding,
studied hereafter is the pointwise directional dependence of peak amplitudes.

The examination follows the setup in Figure 2, and its immediate concern is
directed toward peak amplitude in a 1-D time history, bg(t), extracted from {b(t)}
along a direction of & on the horizontal plane;

be(t) = | cos® sin® | {b(t)}
[also, 1de(t) = | cos® siné | {,d(t)} supplementarily]

Under complete lack of operational ease, clumsy repetition of ad hoc evaluations
must be continued along each direction as well as at each point.

Figure 3 summarizes results of the examination concerning the variation of peak
amplitude depending upon & and the associated field developed on the horizontal
plane. Employing a presentation form corresponding to Figure 2, direct comparisons
are intended therein between RS values and peak amplitudes. For both pointwise
directional and field characteristics, discrepancies are seen to be minor enough
from practical points of view. Hence it is concluded that essential features in the
non-tensorial properties of peak amplitude may be replaced by the tensorial formula-
tion. Note that the directional distribution of peak amplitudes is, in general,
inconsistent with the envelope of Lissajous’ orbit.
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