Proceedings of Ninth World Conference on Earthquake Engineering
August 2-9, 1988, Tokyo-Kyoto, JAPAN (Vol.V)

7-1-4
ON THE RESPONSE SPECTRUM ANALYSIS AND THE SPECTRAL MOMENTS

Takeshi 'J'.‘ANIMOTO1 and Toshio KI’I‘A.HARA2

lAssistant manager, Technical Department, Bridge & Steel Structure
Group, Sumitomo Heavy Industries, Ltd., Japan

2Genera.l manager, Technical Department, Bridge ‘& Steel Structure
Group, Sumitomo Heavy Industries, Ltd., Japan

SUMMARY

We have investigated the Complete Quadratic Combination (CQC) method, and
concluded that the CQC represents the true power of the White Noise (WN) in vec-
tor space. We show that the Square Root of Sum of Square (SRSSY and the Algebraic
Sum (AS) methods are the particular cases of quadratic form, and that the SRSS
and AS have some defects from a viewpoint of the power. We present the well
classified formulae of the responses, and the five coupling conditions which the
SRSS response makes unreasonable. The Oth spectral moment of the Finite Interval
(FI) which tends to that of the WN is derived from the Mikusifiski operator.

INTRODUCTION

Response spectrum analysis has been used in aseismatic design of long span
bridges in Japan. The SRSS or so-called RMS method is widely used now, but unrea-
sonable responses are often found in structures which have closely distributed
elgenvalues. The confusion is increased because the unreasonable responses do not
always arise in similar structure. In the 1980's, A.D. Kiureghian and E.L. Wilson
(Refs. 1,2) introduced the CQC based on spectral moments. Wilson pointed out that
the SRSS should be replaced by the CQC using spatial building model. Since the
theoretical defects of the SRSS are not clear, the SRSS is still being, used.
Kiureghian calculated the spectral moments of the WN and the Filtered White Noise
(FWN) in vector space, employing the Fourier transformation, Tesidue theorem and
statistics. In the classical control theory (Ref. 3), the Laplace-Fourier trans-
formation is used and frequency response is easily obtained from the Paley-Wiener
theorem (Ref. 4). But convergence trouble often arises as the infinite integral
interval (-o0,+o0) , 1In the 1950's, the Polish mathematician, J. Mikusifiski
(Ref. 5), introduced a functional operator as

a'b = (Jga(t-T)b(T)dT) = U’(t]b(t-T)a(T)dT}, l-a = (f(;a(T)dT), s=8/1 (D

where 1 and s are the integral and differential operators, and § is delta func-
tion. This convolution is defined over the finite interval (0,t) as the Duhamel
integral. The operator is an algebraic field of quotients and is easily tregfed
in vector space; moreover it is a distribution which can avoid the convergence
trouble. Urbanik applies the operator to generalized stochastic process (Ref. 6).
Wolf uses the convolution in the soil-structure interaction problem (Ref. 7). We
will apply s to the response spectrum analysis in the frequency (o) domain.
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ALGEBRAIC APPROACH OF THE RESPONSE SPECTRUM ANALYSIS

In the linear dynamic FEM, the 2nd order ordinary differential equation and
the transformed equation by eigenvalue analysis are written, respectively, as

MUCt) + COC) + KU() =M a(t), in the global space (2)

E¥(t) + 2DQ YD) + Q2Y(t) = P «a (1), in the modal space. (3)
The notations are summarized as

M : mass matrix s E : unit matrix = diag(l,..,1)

C : damping matrix , D : damping factors = diag (h:,..,hn)

K : stiffness matrix s Q : circular frequencies = diag(w1,.., wn)

M’ : mass vector for (t), Q2: eigenvalues = diag(w12,.., @n?)

a@ : scalar acceleration , P : participation vector

y(t) : displacement vector, Y(t) : displacement vector

U(t) : velocity vector s Y(t) : velocity vector

fi(t) : acceleration vector, Y(t) : acceleration vector

where diag (..) is a diagonal matrix and the suffix n is the maximum modal degree.
Modal matrix & 1is composed of column eigenvector ¢ » or row vector ¢ T, @
and the vector transformations are written as

¢
d = (¢1,..,9n) = o,
¢«
Uct) = @Y, U = oY), G = o¥), &™™M=P )

where ® 7 is a transpose and the suffix « is the maximum degree of freedom. We
introduce a mapping between the time (t) and s domain. We define the displace-
ment, velocity, and acceleration vectors in the global and modal space as V(s),
V(s), V(s) and Z(s), Z(s), 7(s). The relations are written by V(s) and Z(s) as

Vis) = sV(s), V(s) = s2V(s), (5)
2(s) = sZ(s), Z(s) = s2Z(s) (6)

where s and s? are the scalar operators. From Eq. (6), the orthonormalized Eq.(3)
is mapped on the s domain as Eq. (7). The Z(s) is analytically solved as Eq. (8).

(s?E + 2sDQ + Q2)Z(s) = PB (s) (D]
Z(s) = (s?E + 2sDQ + Q2)-'PB (s) = H(G)PPB (s), or

r 1

s?+2ht w 1stw 12 0
Z(s) = 0 ., 1 PB (s) = PPH(s) B (s) (8)

s2+2hnw nstwn?

where B (s) is a mapping of scalar a (t) and the suffix P is diagonalization of
Pi.e. P’ = diag (P1,..,Pu) . H(s)?P = P’H(s) is algebraically assured. Setting
all the initial conditions at 0, the global space responses are finally given as

Vis) = ®I(s) = ® PPH(s) B (s), 9)
V(s) = s Q®Z(s) = s PPPH(s) B (s), (10)
V(s) = s2®Z(s) = s2®PH(s) B (s). an

Fig. 1 shows a block diagram of the Eqs. (8), (9), (10) and (11). If s = j o
(j = 4/ -1), we derive the Fourier transformation. The responses are, algebraical-
1y, lst order vectors expressed by linear combination of matrices.

B (s) Z(s) V(s) Vis) Vis)

PPH(s) o) s s -

Scalar Input Vector Output
Fig.l Block Diagram of Structural Responses

-
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Symmetric Gram Matrix and Power Operational calculus is continued and the re-
sults are mapped on the @ domain by s = jw. From Eq.(9), the displacement
function V« (s) of the kth freedom, its conjugate function Vk(-s), and the
spectral density function Sf in the s domain are written, respectively,as

Ve(s) = ¢ «"PPH(s) B (s) = H(GS)TPP ¢« B (s), : 12
Vi(-s) = ¢« "PPH(-s) B (-s) = H(-s)TPP ¢ « B (-s), 13
St = Vk(s) -Vk (-s) = ¢« TPP(HGIH(-s)TIP ¢« B (s) B (~s) 14

where « depends on ¢ k alone and the other terms are independent of k .

B (s) B (-s) is indeterministic and the other terms are deterministic. Sf is,
algebraically, a 2nd order "real" scalar function in the ® domain because of
Ve(jw) Ve (-jw), and is expressed by quadratic form. G(s) = MH(s)H(-s)T) is an
asymmetric Gram matrix; notice that the imaginary parts remain in the o domain.
This fact seems to be a contradiction. We find that the residue theorem is needed
on account of the asymmetric Gram matrix. Sf is rewritten as

St
St

¢ «TP® ({H(S)H(=8)T+H(-s)H(s)T} /2P* ¢ &« - B (s) B (~s), oor
$«TPPG(SIPY ¢ k- B (s) B (-s). (15)

nou

G(s) = ({H(IH(-s)T+H(-s)H(s) T} /2) is a symmetric Gram matrix and all the
imaginary parts vanish in the @ domain. G(w) 1is referred to as

4 - 2 2 .. 2 2 nt
® (w12+wn’-4dhihn0i1wn)w?® + 0120 ] 16

C(o) = [ Totra TR P o T 0 ®) (o Tte T bt 0T o ?)

where the suffixes | and a are the integers of (1,..,M) . We will integrate Sf in
the s domain using ds = jd w, and the power function Pf is written as

Pt = LA 8 = g PP A AR B () B(-s) dSIPP Gk = G TPP AP Gk (UT)
J J@n J'iwn

where (wn, @n+1) is a Finite Interval (FI). A@ is the Oth spectral moment of
the FI, and depends on G(s) and the seismic spectrum B (s) 8 (-s).

Spectral Moments of WN, FWN and FI  Kiureghian presented the spectral moments of
the WN and FWN. The WN is physically curious, for instance it includes even the
frequencies as 0.000001Hz and 1MHz. Seismic mechanism of the FWN is approximated
by a 2nd order ordinary differential equation. As the descending characteristics
of the FWN are not sharp, we may not use the FWN to simulate the sharp peaks of

g (s) B(-s). The spectral moments of the WN and FWN are derived from the infinate
interval Fourier transformation. In Eq.(17), if the limits of wn—=+0 and @wn+1 >
+oo and B (s) B (-s) = const. = gn, then 1@ of the FI tends to that of the WN.
Eq.(17) is expressed in the s domain, but we think that this equation is a kind
of the finite interval Fourier transformation or the infinate interval Fourier
transformation with a window function. The FI has the sharpest descending
characteristics as - db/oct. (Fig.2). We will calculate A e of the FI in a
concrete form. The spectral density functions of the velocity and acceleration
are -s2Sf and s4Sf, but the calculation of their powers are abandoned in the face
of the difficulty of analytical integration. Now, we point out that the direct
spectrum analysis of arbitrary B (s) p(-s) (Fig.3) may be possible, if A2 andd 4
of the FI are obtained analytically.

WN g3 gn
gn '/--++°° g2 gn+t
FI FWN g1
L’
0 H0cwn wnr1oto @ Wl w2 w3 Wa..@n Wnel wne2?
Fig.2 Seismic Spectrum Fig.3 Arbitrary Seismic Spectrum
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Oth Spectral Moment of FI = As the analytical integration is difficult, we
consider the following existent conditions. @ : Sf is a real function in the o
domain. @ : Pf is integrable over (wn,wn+1) as @. @ : Each element of matrix
29 is integrable as Eq.(16) in case of B (s) B (-s) = gn. After the weary
calculation, we obtain 1 e and a primitive function F as

Z.a=(2.anm)=(F(co)):;:”=(F(mnu)l-(F(mn) ), (18)
F(w) = gn*
[ QI_‘L{%P’T’“Q—M {mod(arctan(Al)+= , =) + mod(arctan(Amd+=, =)}

_2hiwi¢hwithnwn)-w12twa?
4w 1(1-h12)172Klm

w2-2w1(1-hi®)1"2g+w1?
w2420 1 (1-h12) 1729+ 12

In(

_2hnwnthi 0 ithenwn)tw 12-wn? In( w2'2wm(1-hm2)"2w+wm2) ] 19)
40 n(1-hn2) ' 2KIm M 0T 20 a(I-had) 7 2o tpae 1
Klm = (0 12-wn2)2 + JoiwnChewi1thr o) hi o 1 +thnwn), 20)
Al =2hiwiw/(~e2t+tw1?), Am = 2hrwow/(-w2twa?)

where F is a real symmetric matrix and mod( , ) is a remainder. Both the sharp
peaks of B (s) B (-s) and G(s) are considered by the narrow band of (wn, wn+1).
In the limits ofwn—>+0 and w n+1—>+00, 2 a of the WN, which is the same that of
Kiureghian, 1s derived as Eq.(21). Then Eq.(18) is a generalization of the WN.

Ae = ( Aein ) = ( 2mgn(h @ 1thnwn)/Kim ). 2D

Well Classified Formula and States of CQC, SRSS and AS We can show the CQC
response in an algebraically well classified formula. The modal cross~correlation
p is derived from Eq.(21) by normalization as Eq.(22); Eq.(23) is a concrete
form of Eq.(22). The square root of the power 4 Pf in Eq.(24) 1is a "RMS-value".

p = (plm) = Aeain/W 2e114 Aean) ), or @22
( plm) = (8¢hibm) ' 2+t yha) ¥ 37 2/{(1-y2)24+4y (hi+ha v ) ¢h1 ¥ +ha)})  (23)
VPf = (¢gxTPPAePP ¢ )!72 = (¢ «TPPQP p QPPD ¢ y)172 24)

where Q° = diag(y A et11,..,4/ Aenx) and ¥ = ws/@ ! . QP represents the response
spectrum, and the CQC response Rc of the kth freedom is well formulated as

Rc = (px"PPSPpSPPP k)72 = (XTpX2t72, X = S°P ¢« (25)
where S® = diag (St,..,Sn) is the given input response spectrum. The CQC, SRSS and

AS are summarized by quadratic form. Supposing the displacement responses of the
SRSS and AS are Rs and Ra, the three responses are written, respectively, as

Re = XTpX)1r2, (26)

Rs = (X Xn2)172 = (X"EX)1"2, @27

IRa| = ( (2 Xn)2 )172 = (X"g:6e™X)!1"2= (X" (eeT)X)!"2 (28)
where | | 1s an absolute value, E is a unit matrix, e =(l,..1) is a column

vector, and all the elements of Gram matrix (ee') are 1. Eq.(28) is a perfect
square formula and Ra is also written in quadratic form. The off-diagonals of the
SRSS or RMS are too weak, and those of the AS are too strong (Fig.4).
Consequently, the three methods are stated as SRSS = RMS < CQC < AS. The CQC
method is naturally derived from the algebraic operations, and represents the
true RMS-value if the WN assumption is admitted. The SRSS or so-called RMS method
does not represent the RMS-value despite its name. Because the derivation of the
SRSS requires that (H(s)H(-s)T) = H(s)®2 , But it is a well known fact that
(HC¢HHC=s)T) 3 H(s)®2 . As for the AS method, the condition of p = (ee’) yields
won = w1 and ha = h: for all 1 and m, which is an obvious contradiction. These
are the theoretical defects of the SRSS and AS.
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Fig.4 Modal Cross-Correlation

RESPONSES OF CQC, SRSS AND TIME HISTORY

We can show that unreasonable SRSS responses are found in long span bridges
as in the spatial buildings studied by Wilson. Figs.5 and 6 show spatial cable
stayed bridge models which have closely distributed eigenvalues. Model 1 is a
single plane cable system and model 2 is a double one. Fig.7 shows the CQC, SRSS
and Time History (TH) responses of model 1. TFig.8 shows the CQC and SRSS
responses of model 2. The responses are girder moments of longitudinal
acceleration. The given input response spectrum and seismic wave of the TH are
taken from the Taft earthquake of 1969.
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In model 1, the SRSS is found to give unreasonable responses, while the CQC & TH
give reasonable responses. The CQC and SRSS have the same responses in model 2,
despite its closely distributed eigenvalues. That is to say, unreasonable SRSS
responses do not always arise in similar structures. This is a part of the
uncertainty of the SRSS. From the theoretical inspection and the numerical
models, we will stand for the CQC method.
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UNREASONABLE RESPONSES OF SRSS

In the previous numerical models, we showed the uncertainty of the SRSS. We
will clarify the reasons why the unreasonable SRSS responses are occasionally
revealed. Eqs.(26) and (27) are rewritten as

Re X pX)t72, (29)
Rs XEX)'-2, X = SPPP g« 30

where the vector X is composed of given input response spectrum S°, participation
factor PP, and kth freedom modal vector ¢ k. The differences between them are ¢
and E. p 1is a function of w1, wa, h! and bn , whereas E is a unit matrix. Ve
have come to the conclusion that the following five coupling conditions ( the AND
conditions ) make the SRSS responses uncertain.

: Multiple roots or closely distributed eigenvalues existed.
The damping factors are relatively large.

The elements of ¢ k are large,

: The elements of participation PP are large.

: The elements of input response spectrum S? are large.

SICEZISIC)

From the conditions @ and @ , off-diagonals of p tend to 1, whereas those of E
are all 0. In the quadratic forms as Eqs.(29) and (30), the elements of X also
influence the values of Rc and Rs. The coupling conditions @, @ and ® yield
that the elements of X differ from 0. The confusion of the SRSS derives from the
latter three conditions. The following striking examples show that the SRSS
results in underestimated, equal, and overestimated responses as compared with
the CQC. The conditions @ and @ hold, all the elements of @ are 1, suppose the
two dimensional case i.e. X = (X1,X2), and that the values of X are selected
from -1, O and 1. The three examples are as follows:

Ex. l: underestimated case ( X = (1,1) ) - Rc =2, Rs = /2, Re/Rs = v/ 2
Ex. 2: equal case ( X = (0,1)) » Rec=1,Res =1 , Re/Rs =1
Ex. 3: overestimated case ( X = (-1,1)) - Rc =0, Rs = 4/ 2, Re/Rs = 0

Ex. 1 is the dangerous case in aseismatic design. Since X is the multiplication
of ¢«, P°, and S® as X = S°P? ¢ «, if one of the ¢ «, PP, or S® elements are
almost 0 on account of the joint of mode shape, the asymmetric mode, or the very
low or high frequencies respectively, then Ex. 2 results in. Ex. 3 shows
unreasonable responses when it arises as model 1. The most important defect of
the SRSS is the uncertainty of its numerical results. We conclude that the SRSS
should be replaced by the CQC in aseismatic design.
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