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SUMMARY

The applicability of statistical equivalent linearization for evaluating
the nonstationary stochastic response of a strongly nonlinear hysteretic system
subjected to typical earthquake excitation is investigated. The applicability is
demonstrated for the Coulomb slip system which represents the most extreme
hysteretic system encountered in earthquake engineering. It is shown that the
response of a Coulomb slip system can be evaluated with high accuracy by
non-Gaussian equivalent linearization where the non-Gaussian properties of the
response are taken into account.

INTRODUCTION

The method of statistical equivalent linearization has remained an
attractive tool over 30 years since its first formulation in order to estimate
the first two moments of the stochastic response of a nonlinear system. Although
the method gives sufficiently accurate results for many nonlinear problems of
engineering interest, the conventional approach fails to predict the second
moments of strongly nonlinear systems such as the Coulomb slip system. In (1],
it is even claimed that no statistical linearization technique can predict
accurately the second moments of the (displacements) response of a Coulomb slip
system.From [1l] follows that no amount of sophistication of the method will lead
to correct second moments of a hysteretic system, especially when the excitation
is strong, because all hysteretic systems exhibit to a certain degree physical
features of a Coulomb slip system.

A closer look, however, reveals that the failure to predict accurately the
displacement response (drift) of Coulomb slip system can be attributed to the
conventional assumption of a jointly Gaussian distributed nonlinear response.
The assumption of a Gaussian distributed response however, is not inherent to
the technique of eguivalent linearization. It will be shown at the beginning of
this paper that a statistically "true" linear system does exist in case of a
symmetrically distributed response and Gaussian white noise excitation with
zero mean. Following [2], the adjective "true" is used when the first two
moments of the nonlinear stochastic response are represented exactly by the
linear response of the equivalent linear system.

Gaussian white noise excitation is a necessary condition for the existence
of a statistically "true" linear system. Since white noise is not a suitable
model for earthguake excitation, filtered shot noise [3] is used to model a
typical earthquake excitation as an evolutionary process with asymptotic zero
low frequency content.

TO THE EXISTENCE OF A STATISTICALLY "TRUE" EQUIVALENT LINEAR SYSTEM

Consider a n-th order nonlinear system which follows the differential
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equation
dy

T gly) + b(t) (1)

where y(t) is the state vector of the nonlinear response, g(y) a nonlinear asym-
metric relation, i.e. g(y) = -g(-y), and b(t) is the excitation vector having
only time modulated Gaussian white noise components. By using the method of
equivalent linearization (EQL), the nonlinear egq.(l) is replaced by a linear
differential equation

4X _ (a(e)lx + b(t) (2)

where x(t) is the linearized response vector and [A(t)] the matrix to be deter-
mined by equivalent linearization. In the following, the required conditions on
[A(t)] are investigated which lead to identical first two moments

Elx} = E{yl] and E[xx'} = E{yy"} (3)

of the nonlinear response and the (stochastically "true" equivalent) linear res-
ponse. Clearly, the first moments E{x}=E{y} are identical for the above stated
assumptions, since the nonlinear response y and the linear response x have both
a symmetric distribution with zero mean, i.e. E{x}=E{y}=0 . Hence, only the
condition for identical second moments needs to be investigated. In order to
explore conditions for identical second moments, a procedure deriving the
Lyapunov equation is applied for eqg. (1):

d
E{— vy} = E{g(y)y’} + E{byT} = D, + F

at y Ty (4)
where Dy = E{ g(y)yT } and Fy = E{ byT }
Since,
dE{yy"} dy dy? T T
—_—— = E{— + E{y —} =D, + D_ + F_ + F (5)
e {dt ¥} {y dt} v ¥ v v

the second moments are uniquely determined by egq. (5) and the initial conditions.
Analogous considerations for eq. (2) lead to the following result:
dE{xx'} T

dx o dx T
= E{— x"} + E{x —} = D_ + D + F, + F
dt {dt Y ¢ dt} x x x x

(6)
where D, = [A(t)E{xx"}] and Fy = E{bx'}

Assuming for the time t=0 both systems at rest, i.e. E{x(0)}=E{y(0)}=0, eq.(3)
will be satisfied if the right hand side of eq. (5) and eq.(6) are identical,
i.e.:

T

+ DT t Fy t Fy (7)

T T
Dy + Dy + F, + Fy = D -

Y

The validity of Fy = Fy has been shown for the assumed special case of a
Gaussian white noise excitation with zero mean (See e.g. # 5.7 in [4]).
Hence, if

Dy = Dy = [A(t) JE{xx"} = E{g(¥)y"} (8)

is satisfied, eq.(7) holds and consequently eq.(3) which states the definition
of a statistically “true" equivalent linear system. Using eq. (3) and eq. (8) the
"true" coefficient matrix [A(t)b] is found by

A(e)] = BElgly(t))yT ()} Ely(e)yT (03} (9)
The above relation is also found by selecting [A(t)] such that
Elllg(y(t)) - AE)y(t)[*} - minimum (10)

is minimized, which is the criterion applied right from its early beginning.
Since the characteristics of the nonlinear response y(t) is not known, but can
be found iteratively, eqg.(9) is replaced in the conventional equivalent
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linearization technique by
[A7(t)] = E{g(x(t))xT(t)} E{x(t)x’ (&)}

although it is well known that the nonlinear response is in general not Gaussian
distributed.Since it is shown above that eq. (9) leads for the considered case to
exact estimates for the variance of the nonlinear response quantities, biased
estimates for strongly nonlinear systems are due to the unjustified assumption
of jointly Gaussian response gquantities only.

! (11)

CONSIDERATION OF NON-GAUSSIAN MARGINAL DISTRIBUTIONS

For practical applications, eq.(9) is only useful for those cases for
which it is possible to construct the joint distribution fy(y) from known
expectations E{x}=E{y} and E{xxT}=E{ny} alone. In other words, if the shape of
the joint distribution is known as function of E{y} and E{ny}, the "true"
coefficient matrix can be established by the following procedure. Since eq.(3)
holds for a "true" linear system, fy(y) can be established as function of E{x}
and E{xxT}. Then, it is possible to evaluate a nonlinear relation

y(x) = Fy 1 (F (x)) (12)

between the nonlinear response y(t) and the linearized (Gaussian) response x(t)
which satisfies eq. (3). F denotes in eq. (12) the cumulative distribution and F-l

its inverse. By use of the nonlinear relation y(x), the expectation
+oo

+o0
E(g(y)y"} = 1 [ ey o1 xax (13)
- -0
can be evaluated and subsequently eq. (9). Hence, the nonlinear relation y(x)
allows one to take into account non-Gaussian properties of the response.

In practice, however, it is very difficult to formulate the shape of
non-Gaussian joint distributions, although it is often possible to approximate
the shape of probability distributions of components of the response vector vy,
i.e. marginal distributions fy; (yj;) as function of E{x;} and E{xiz}. An
efficient way to determine realistic marginal distribution is the introduction
of nonlinear transformations yi(xi) established on the basis of physical
considerations [5]. Any conceivable nonlinear transformation can be utilized,
however under the condition that it meets egq.(3), i.e.: E{y;(x;)} = E{x;) and
E{y;(x;)v5(x5)} = E{x;x;}. The nonlinear transformation y; (x;) is then used to
determine the marginal distributions fyi(yi). For constructing approximately the
non-Gaussian joint distribution, the utilization of Nataf’s [6,7] model is
suggested.

GOVERNING EQUATIONS FOR THE GROUND MOTION AND FOR THE COULOMB SLIP SYSTEM

A stochastic model used extensively in the past to describe earthquake
excitation in stochastic terms is filterxred white noise [3,4]. For the purpose of
a linear response analysis, uniformly modulated filtered white noise is shown to
be adequate. When the structure reacts strongly nonlinear, however, the ground
motion should be modeled as evolutionary process to account for the evolution of
the frequency content with respect to time.

The nonlinear response of the Coulomb slip system and systems with similar
physical properties (hysteretic systems) are strongly affected by the low
frequency content of ground motion [1,3]). It is therefore important to represent
realistically the low frequency content with zero low-frequency asymptote. For
the results presented herein, the ground acceleration a(t) will be assumed to be
filtered shot noise [3,4] described by the equétion

M t
a) = ¥ 2Lek 5 % (6) = Ihxk(t-r) s, (1) dr (14)
k=1 0
where a superseeded dot "-" indicates the derivative with respect to time and

V-249



the filter motions xp(t) are defined as filtered shot noise where hyy is the
impulse response function of a simple linear oscillator and the shot noise sk(t)
is modulated white noise,

2 by

a b'ak a -
with ¢, = (% © *. 5 (15)
k bk k

-akt -bkt
s, (£) = n, (£)2—=

where the parameter ay,by define the shape of the deterministic modulating func-
tion and ny (t) represents white noise with a constant intensity Iy. Using the
representation in eg.(14), M 2 2, and the above subsequent relations, allows one
to model ground acceleration typical for earthquake excitation as evolutionary
process with zero low-frequency asymptote.

The Coulomb slip system consists of a mass sliding on a flat horizontal
surface with an constant friction coefficient, u, where the surface has a random
excitation a(t). Let yj be the relative displacement of the mass and yp its
velocity. Then, the slip motion is governed by the following set of the first
order differential equations:

Yy, 7y

-alt) - sgn(yz)ug for vy, *# 0
o= . _ 0 for y. = 0 and |la(t)| < pg
= ja(t), = 16)
Y2 g(y2 a(t) g -a(t) - sgn(al(t))ug for y, = 0 and la(t) | > pg ¢

where g is the acceleration of gravity. Note, that for a non-white colored exci-
tation, no slipping (yZ=O) might occur temporarily.

NUMERICAL EXAMPLE
The parameters of the model of the ground motion described in the previous

section have been found by adjusting them to a typical European (Friuli-1976)
earthquake in the near field. These parameters are listed in Tab.l.

k Sk[mz/sec3] wy [rad/sec] & (-1 ak[sec‘ll bk[sec'ﬂ
1 0.15 1.0 0.6 0.2 0.22
2 0.30 3.0 0.4 0.2 0.50
3 0.80 6.0 0.1 0.3 1.00

Table 1: Parameters of the ground motion model

The variance of the ground acceleration may be seen from Fig.l. Since the
modulating functions fy(t), defined in eq.(15) by the two parameters ay, by,
k=1,2,3, differ from each other, an evolutionary process can be generated. Its
modulating function a(t,w) shown in Fig.2. Note from Fig.2 that the evolutionary
process has a slower decay of its low-frequency motion with a zero low-frequency
asymptote. The constant friction coefficient p of the Coulomb slip system
(eq.(17)) has been selected such that sliding occurs after passing the threshold
acceleration 0.1g, i.e. pu=0.1.

The statistically "true" eguivalent linear system has been found by use of
eq. (9) and performing statistics on a sample of simulated state vectors y
(sample size 1000) of the non-linear response. A time step procedure using
complex modal analysis [8] (time step 0.05 sec) is then applied to evaluate the
second moments of the stochastic response of the time varying equivalent linear
system. The results for the Coulomb slip system are presented in Fig.3 and Fig.4
where the standard deviation of the displacement and velocity responses are
shown. The small deviation from the simulated results are clearly due to random
fluctuations inherent to the finite sample size. Additionally, it is worth
noting that much care was required to simulate the ground motion (filtered shot
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noise) with sufficient accuracy in the low-frequency range. To obtain the
presented simulated results, a quite short time step (0.001 sec) in the
numerical integration procedure was required (for the presented good agreement) .

CONCLUSIONS

Based on the results presented herein the following conclusions can be
drawn for the random response of strongly yielding structural systems which
display Coulomb slip type behavior:

1. A statistically "true" equivalent linear system exists for nonstationary
earthquake excitation which captures exactly the second moments of the random
response of a strongly yielding system.

2. To improve the accuracy of eguivalent linearization non-Gaussian response
properties must be considered.

3. The non-Gaussian response properties can be taken into account within the
framework of equivalent linearization by using nonlinear transformations y(x)
between the nonlinear response y and the linearized response x.

4. The displacement response (drift) of a strongly yielding system depends
strongly on the low-frequency content of the ground motion which should be
modeled by filtered shot noise.
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