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SUMMARY

This paper presents a practical method to obtain the inelastic random
response of reinforced concrete frames, considering the nonlinear properties
of constituent members. By using a simple equivalent linearization method,
the differential equation of the covariance response is derived and solved
numerically with step by step calculation. The numerical analysis is carried
out in the case of three-story one-bay plane frame model, and the results are
compared with Monte-Carlo simulation to examine the accuracy of the method.

INTRODUCTION

To evaluate structural safety under severe earthquakes, the statistical
characteristics of nonlinear response should be studied. Especially, the
response analysis of framed structures subjected to random earthquake motions
is quite important for tracing the damage process of each structural members.

In this paper, the reinforced concrete plane frames with weak-girders and
strong-columns are studied. In order to get response statistics of frames
under random earthquake motions analytically, a simple equivalent linearization
method is proposed and applied to the nonlinear properties of constituent
members.

METHOD OF ANALYSIS

Linearization of Nonlinear Element To express the nonlinear properties of
structural constituent members, several inelastic beam models have been pro-
posed. 'Generalized Composite Beam Model' (Ref. 1) which was proposed by
H.Takizawa is used in this study. As shown in Fig. 1, a simple supported
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Fig. 1 Inelastic beam model Fig. 2 Moment-rotation relation
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member AB is imaginarily divided into three components along its member axis.
The relation between end moments Mj, Mp and end rotations tp, tg is expressed
as follows in incremental form.
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In this study, shear and axial deformations are considered to be negligible.
In Eq. 1, the first term is the stiffness matrix of an elastic component I,
the second term is that of a component I with end A hinged and the third term
is that of a component I with both ends hinged. Kj(Kp) is a instantaneous
stiffness of end A(B), and Kg is a initial stiffness. These stiffnesses are
decided from the hysteresis relation between end moment M and end rotation O,
as shown in Fig. 2. This relationship is usually given under antisymmetric
loading condition. Thus, ©5(©p), which is called 'pseudo antisymmetric rota-
tion' is defined as,
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and from Eq. 1 and 2, the relation between 7), TR and 64, OB is expressed as,
{ATA} [3/2 + £p/(2£p) —1][AGA

], EA(B) = 1/KA(B) (2)
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In the assumption that the moment distribution of the member is nearly anti-
symmetric, T-© relation turns out to be linear relation by setting fj = fg,
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The equivalent linearization of the member is defined as follows,
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where, Kg : equivalent stiffness, Cg : equivalent damping. Kg and Cqy are
functions of response statistics as described later. By substituting Eq. 4

into Eq. 5, the relation between end moment and end rotation of the linearized
member is given as,
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where, [Ko] : element stiffness matrix, [Cg] : element damping matrix.

], when f5 > fp (3)

(5)

When the rigid end zone of the member and the translational movement of
the nodes are taken into consideration (Fig. 3), this relation is expressed as,
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Fig. 3 Member element model

Equation of Motion The stiffness and damping matrices of total frames are
easily formulated by assembling all the element stiffness and damping matrices.
The total structural equilibrium is, therefore,
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where, M : mass matrix, U : horizontal floor displacements, @ : nodal rotations,
yo : ground motion. When the ground motion is a stationary random white noise
with power spectral density Sp, the differential equation of Sy which is a
covariance matrix of a vector X = (U,6,U) is derived.
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Nonstationary statistical responses of frames are obtained by solving Eq. 9
with step by step calculation.

Evaluation of Ko and Cgo The equivalent stiffness K, and the equivalent
damping Cg are determined from the equivalent linearization of a stationary
hysteresis loop as shown in Fig. 4. The amplitude of the loop is a og, where
0@is a standard deviation of rotation © in random responses and @ is a para-
meter which determine the level of the equivalent stationary amplitude. By
using the "Geometrical Method" (Ref. 2) which was proposed for sinusoidal exci-
tations, Ko and Cg are expressed as,
[ Ke = C1(a ag)Ko
Ce = -S1(a0g)Kg/we + Cq
where, Kp : initial stiffness, Cp : initial damping, we : the first natural
frequency of the structure calculated assuming the first mode shape. The
functions C;, Sj are determined from the shape of the hysteresis loop. In
case of Clough model (Fig. 5) which is considered to represent the hysteresis
restoring force characteristics of RC members (Ref. 3),
{ C1 = (-r)/u
S1 = ~2(1-r)(1/u-1/u2) (1+r(u-1)} /=
k= aog/By, 8y =My/Kg
where, r : stiffness ratio of the second to the first branch, My : yield moment

of the member. The standard deviation 0@ is obtained from the nodal response
statistics using the following transformation,

(10)

11

@, op)T = [Mo1.05,0,0pT (D=L, (0= ;] (12)
therefore
Sg = [TISgu(TIT (13)

where, S@ : covariance matrix of ©, Spu : covariance matrix of vector (6, u).
Clearly, Sgu is a element matrix of Sy in Eq. 9. Thus, at each step calcula-
tion in Eq. 9, the values of Ko and Cg are varied according to Eqs. 10 and 13.

Fig. 4 Stationary hysteresis loop Fig. 5 Clough model
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NUMERICAL STUDIES

Evaluation of Parameter a Since the equivalent linearization coefficients
Ke and Cg in Eq. 10 are both functions of parameter &, the appropriate value
of a must be determined at first. For this purpose, the response of a single
degree of freedom hysteresis system subjected to stationary random white exci-
tation is examined.

A simple way of choosing Ko and Cg of equivalent linear system is to
match the standard deviations of displacement and velocity to the correspond-
ing results of Monte-Carlo simulation of a single degree of hysteresis system
under stationary condition. It can be written as,
= bt 2
{ Ke/m = (ox/oy) (14)
Ce/m = Sp/(2032)
where, m : the mass, gx{(oy) : simulation result of standard deviation of
displacement(velocity). The hysteresis model of the system is Clough model.
And the system parameters are selected asm=1, Kg =1, My =1, r = 0.0 and

hg = 0.03, where hp is a initial damping coefficient. The sample of stationary
random white excitation is generated using the method of Ref. 4,

From the simulation calculations for several values of power spectral den-
sity Sg, the results of Ke and Cq are plotted against oy in Fig. 6. The solid
line in the figure shows the relations obtained from Eq. 10 for a = 2.5. It
seems that theoretical results of a = 2.5 agree well with simulation results.
So, assume that this value of a is still valid under nonstationary condition,

a = 2.5 is adopted in this study for Clough model.
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Fig. 6 Relation between K., Cq and 0y
Analysis of RC Frame The proposed method is applied to a reinforced concrete

plane frame model described in Fig. 7. Sizes and yield moment values of the
members are also indicated in the figure. The rigid end zone and the slab effect
of the member are neglected. Natural periods and participation functions of

this frame are listed in Table 1. For the hysteresis characteristics of the
member, Clough model is used. As shown in Fig. 8, its initial stiffness is

ayKg, where ay is the stiffness degradation ratio assuming 1/3, and post yield-
ing stiffness is 0.01Kp. The excitation is stationary random white noise with
power spectral demsity Sg = 1600 cm?/sec3 and 10 sec duration.

In order to examine the accuracy of the method, Monte-Carlo simulation
was carried out using 100 sample waves. Fig. 9 shows the locations of yield
hinges and the values of average maximum ductility factors obtained from the
simulation calculation. It is seen that yield hinges are located at the beam
ends of all floors and the column end of the first floor.

The theoretical results are shown in Figs. 11, 12 and 13 for the standard
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deviations of horizontal floor displacement U, its velocity U and nodal rota-
tion @ respectively. For oy and o in Figs. 11 and 12, the theoretical results
are in good agreement with the simulation results. For dg in Fig. 13, however,
there is some discrepancy between these results.

Member Size Yield Moment Table 1 Property of frame
(em) ¢, m
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Fig. 7 Frame model Fig. 8 Moment-rotation relation
CONCLUSIONS

The practical method is presented for evaluating the statistical charac-
teristics of nonlinear responses of reinforced concrete frames. The nonlinear
properties of structural constituent members are linearized by using a simple
equivalent linearization method. In this method, the stationary hysteresis
loop of the restoring force characteristics of the member is used. And setting
its amplitude a 0@, the equivalent linearization method for sinusoidal excita—-
tions can be applied for random excitations. From the simulation calculation,
it appears that a = 2.5 is adequate for Clough model. Using this method,
three-story one-bay RC frame model is analyzed, and the results are compared
with simulation results. The accuracy of this method is satisfactory for the
evaluation of horizontal floor responses.
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Fig. 10 Displacements of frame
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