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SUMMARY

A conventional method by which the first excursion probability for the
secondary system can be estimated is shown. This approach is based on the
moment equations with respect to the response of the secondary system derived
by using the Fokker-Planck equation. As input excitations, nonstationary
artificial time histories compatible to the design response specrtum are used.
By introducing perfectly-elasto-plastic restoring force-deformation relation,
in which seismic response energy absorption can be expected, the failure
probability reduction criteria are presented.

INTRODUCTION

Secondary structural systems such as pipings, tanks and other various types
of machinery which are installed in the primary structural systems should be
designed to maintain their functions even if they are subjected to destructive
earthquake excitations. Probabilistic reliability analysis for such secondary
systems is particularly important for seismic risk assessment of industrial
plants. In this study, a theoretical procedure in order to obtain the first
excursion probability to excess seismic loading is formulated by using a
simplified coupling model of the primary and the secondary system. Then by
using the results through this method, reduction criteria of the failure
probability are presented by introducing inelastic restoring force-deformation
relation.

ANALYTICAL MODEL AND INPUT GROUND MOTION

A simplified coupling model of the secondary and the primary system shown
in Fig.l is used in this study. In the case where failure of the secondary
system occurs at instant when absolute value of response firstly crosses the
tolerance level, failure probability Py is described as follows.

Pr(ti)=P{lx(lmax>B ; 0< t < t:} (1

As input ground motion, nonstationary artificial time histories campatible to a
design response spectrum are used. In this study, for the design response
spectrum, .the standard response amplification factor for high pressure gas
facility established by the Japanese Ministry of International Trade and Industry
shown in Fig.2 is used. It is the response spectrum of the first kind of the
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ground which corresponds to Tertiary formation(Ref.l). The envelope function
representing nonstationary characteristics of the ground motion is shown in
Fig.3. This function is proposed by Jennings et al.(Ref.2) for the significant
ground motion such as Taft and E1 Centro. Artificial time histories used for
simulation technique are generated by using a method presented by Vanmarcke

et al.(Ref.3).

FIRST EXCURSION PROBABILITY ESTIMATION METHOD

A theoretical estimation method of the first excursion probability is
presented considering inelastic characteristics.

Dynamic characteristics of the ground model In order to derive a theoretical
estimation equation of the first excursion probability, identification of the
dynamic characteristics of the ground model is necessary. Expected value of
pover spectral density function with respect to the ground acceleratin G(w)
estimated by using 50 artificial time histories is shown in Fig.k with solid line.
From this figure, G(w) could be expressed as following equation.

__ QChoww)l+ws 2
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Using the least square method, when hg=0.5, Tg(=21r/wg)=0.285s and Go=1.9Lx10-3
(1/s), the best fit curve shown in Fig.4 as a dashed line is obtained.

Theoretical estimation equation of first excursion probability Py is given as

t
PAO=1-exs{~2 [ W02t} 5
Assuming that the distribution of relative displacement of the secondary system

to the primery system zg(t) is normal distribution and instants at which za(t)
crosses the tolerance level Bp are statistically independent, v(t) is given as

V(t)=% g[exp{ - Zii (1 +1iz£‘)i"')}+szz.z'a, / ’51%;6”(~—2%§:) {14+erf( C)}] (4)

Xz,?szD — . . — 2 % 2
where C=E—D—;§T, D—O‘ggo'zz,‘)fzz.za,erf(u)~ﬁ/°— e *dy

In Eq.(k4), Gzza is variance of zz, 0%;, that of velocity 2 and K.z, is
covariance of zz and 2. As the ground model can be represented by Eq.(2), the
Fokker-Planck equation for joint probability density function with respect to zg,
relative displacement of the primary system to the ground zg, that of the ground
to base rock 2g and their derivatives, that is velocity, 2zg,%Zs and 2g is obtained
as follows.

o __ . ap ) .
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o . P , 2
Falas} =3 2ot 2hotiad +5§~g(2hgmpz9+w§z,)+% 7[260 -

where f is restoring force in the secondary system, hy and hg are damping ratio,
Wa and Wg are natural circular frequency of the secondary and the primary system,
respectively, Y is ratio of mass of the secondary system to that of the primary
system. The second moments with respect to z, and Z, are to be obtained in order
to use Eq.(L). The partial integral method is applied to Eq.(5), then moment
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equations of second moments with respect to z, 2a, zg, Zg s2g »2%g which
consist of 21 differential equations of the first order are obtained. Pr is
obtained by solving these moment equations and using Eq.(L4) and Eq.(3).

First excursion probability estimation of inelastic secondary system Estimation
method of Py for the secondary system with perfectly~elasto-plastic restoring
force-deformation relation shown in Fig.5 is presented in this section. f in
Eq.(5) is equivalently linearized as follows.

f=Ceéa+a)ZZa (6)

where Ce is equivalent demping coefficient and we is equivalent natural
circular frequency. When yielding effect is not so great, it is assumed that
yielding occurs near the main shock and that the response near the main shock is
approximately stationary random process. Cg and wé are obtained approximately
from stationary random process theory as follows.
Co= 2wherfc(—=n7")
VI wen (7)

we=wi— wilexp(—77) -y W erfc(—27")}

where erfc(u)=1—727-_£ue"’dy, 7=V20z./Z. »Ze 1s yilelding displacement. The yielding

force F is determined by the following equation.
F=ax R (8)

where o is a parameter which represents yielding effect and R is the maximum
value of |f| for the linear system.

ESTIMATION RESULTS OF THE FIRST EXCURSION PROBABILITY

From Eq.(3), Pr is a function of time, however, Py becames a constant value
when enough time passes after the main shock. The secondary system must be so
designed as to be able to survive after earthqueke excitation. Therefore,
attention is focused on Py at the time when enough time passes after main shock.
In this paper, the natural period of the secondary system Ty is selected as
it coincides with that of the primary system Ty, because this condition is the
least feasible condition for the secondary system and failure occurs more
frequently than in other case Tg=Tg.

Estimation results for linear system 1In general, failure of the linear
secondary system is caused by force, so Py with respect to absolute acceleration
reaponse X, is obtained. The tolerance level for acceleration By is
normalized by the response spectrum S shown in Fig.2 as follows.

Ae=Bu4/S (9)

Since lic'al is nearly equal to Imgza!, Py can be estimated by substituting BA/wé
into Bp. .

In order to examine effect of Tg on Pp, Pr is shown in Fig.6 taking Ty as a
parameter for y=0, h,=0.01 and hg=0.05. From this figure, variation of Ps is
not so great for the same value of At, so Py is not so dependent on natural
period. Same characteristics can be recognized for other parameter values of
actual structural systems. Therefore, Pr can be estimated conventionally when
the tolerance level is normalized as Eq.?Q).
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Estimation resuts for inelastic system  Absolute acceleration response of the
secondary system with perfectly-elasto-plastic restoring force-deformation
relation is not more greater than the ylelding force. Pg is very small for At
which corresponds to the value greater than the yilelding force. On the other
hand, failure could be caused by displacement response, so Pp for zz is obtained
in this case. The tolerance level Bp is normalized by Ze as follows.

,Ug::BD/ZE (10)

When y=0, hy=0.01 and hg=0.05, the maximum value of Iia| is about 10 times S
(Ref.L). |f| is approximately equal to ]iaY; so R in Eq.(8) is determined as 10
times S. In Fig.T7, Pr is shown for a=1.0 and 0=0.5. Comparing with results for
the linear system, for example, when A4=20, Py is about 90% in the case of
T4=Ts=0.3s from Fig.6. TFor inelastic system, Py for acceleration is almost zero
when A4=20 for both case of &, because F is less than acceleration corresponding
to At=20. On the other hand, for zy, from Fig.T7, Py is less than that for the
linear system if allowable displacement is greater than 1.7 times and 2.3 times
Ze for the case of 0=1.0 and 0=0.5, respectively.

COMPARISON WITH RESULRS OF SIMULATION TECHNIQUE

In order to examine the proposed theoretical estimation method, P is
estimated by simulation technique. P is estimated by using 50 artificial time
histories.

In Fig.8, Py for the linear system is shown by taking natural period as a
parameter. In order to distinguish the tolerance level for the theoretical
method, symbol Ag is used for the tolerance level expressed by Eq.(9). .Just as
in Fig.6, it is recognized that Pf is not so dependent on the natural period for
the same value of Ag. Comparing theoretical results with simulation results, Ps
estimated by the theoretical method is found to be greater than that by the
simualtion method for the same tolerance level. Eq.(L4) is derived by assuming
that instants at which z,(t) crosses Bp are statistically independent. However,
since hy is 0.0l in this case, z,(t) is a narrow band random process. Therefore,
the assumption is strictly not appropriate(Ref.5). Comparing Fig.8 with Fig.6,
the relation can be seen between Ay and Ag for relatively small value of Pr as
follows.

As=0.84, (11)

Next, Pr of the inelastic secondary system is estimated by the simulation
method, Py is shown in Fig.9 which corresponds to Fig.7. In order to distinguish
the tolerance level for the simulation method from that for the theoretical method
expressed by Eg.(10), symbol Ug is used. Ps estimated by the theoretical method
is greater than that by the simulation method for the same value of the tolerance
level as in the case of the linear system. In this case, there is the following
relationship between Ut and yg for relatively small value of Pe.

ts=0.5u, (12)
When the allowable displacement is more than 1.8 times and 1.3 times yielding

displacement for the case of @=1.0 and 0=0.5, respectively, Py can be
significantly reduced.

CONCLUSIONS

A theoretical estimation method for the first excursion probability of the
secondary system Ps is shown. Pp from this method is greater than that from the
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simulation method. There is a simple relation between tolerance level for the
theoretical method that for the simulation method given by Eq.(1l) for the linear
system and by Eq.(l2) for the inelastic system. ZFor the linear system, when the
tolerance level for acceleration is normalized as Eq.(9), Py is not so dependent
on natural period. Comparing with Py for the linear system, Pr for the system
with perfectly-elasto-plastic restoring force-deformation relation can be reduced
and reduction criteria of Pp are presented.
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