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SUMMARY

The seismic response and the reliability of elasto-plastic structures were
studied by taking the stiffness degradation into consideration. The nonstation-
ary seismic input was assumed to have not only time-varied envelope but also
time-varied spectral demsity, and effects of the nonstationary variations on
the response and threshold-crossing probability of the structure were examined
by taking the resonance frequency change due to the stiffness degradation of
multi-component structure into account. The restoring force characteristics of
each component was represented by a simplified Clough model and has various
yielding levels. The covariance of response, the first passage probability,
stiffness degradation rate and plastic deformation rate were computed by using
equivalent linearization technique on the assumption of narrow band response,
and these results were compared by digital computer simulation.

INTRODUCTION

The inelastic response is sometimes accompanied by degradation of the
structure's stiffness or strength or both. Effects of stiffness degradation of
inelastic structure on seismic response have been studied by many authors so
far. For example, in reinforced concrete structures, cracking of concrete and
slip and yielding of reinforcement tend to reduce significantly both stiffness
and strength, so that the natural frequency of structure decreases and sometimes
the response increases according to the approach of natural frequency to
dominant spectral contents of excitation.

The purpose of this study is to clarify the effect of degrading stiffness
on response and reliability of the elasto-plastic structure under seismic exci-
tation, which is assumed to be a nonstationary coloured noise having a monoton-
ically increasing or decreasing dominant frequency.

The exact nature of system degradation depends on the structural materials
and configuration. Clough (Ref.1), Takeda, et al. (Ref.2) and Liu (Ref.3)
developed different versions of a trilinear degrading model with degradation
governed by the maximum displacement. Iwan (Ref.4) proposed a deteriorating
system based a series of parallel Coulomb and spring elements, and other at-
tempts for modeling were presented. Bouc's differential equation model for
hysteresis (Ref.5) was extended to admit stiffness or strength or combined
degradation as a function of hysteretic energy dissipation (Ref.6). Baber and
Noori (Ref.7) proposed a general degradation model based on Bouc model, which
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was modified by Baber and Wen (Ref.6). 1In this study, the inelastic structure
is represented by a simplified Clough's model of hysteresis, which is useful to
examine response of a system with degrading stiffness.

NONSTATIONARY INPUT MODEL

A nonstationary random input model is given by superposing several non-
stationary Gaussian coloured noise inputs. Each of them has a different domi-
nant frequency and a different time lag. This model corresponds to a seismic
excitation appeared as superposed waves coming from distributed dislocation
points at the seismic center.

A flow chart of generation of a nonstatiomary input is shown in Fig.1.

Each shaping filters has a different frequency characteristics Hj(w) and each
envelope function has a different time characteristics nj(t) (i=1,2,+-+,N) given
as follows:

Hi(w) = (wgi® + i2zgiugiw)/(wgi® + i2fgiwgiv - w?) @ = ¥V=1) 1)
where wei = central frequency, 2fgjwgi = equivalent band width.

ni(t) = ajri(t = tei) *I(t = tei)-exp{i1-Ai(t = tei)} 2)
where I(t - tei) = 1(t2tei), O(t<tei) (tei = time lag),

a; = peak value, 1/ }Aj = peak time.

The state equation of each shaping filter and the output equation are
obtained from eq. (1).

U(t) = AfU(t) + BgW(t) (3)
where T
U(t) = {Ul(t):"" UN(t)} s Ui(t) = {Ui(t), {li(t)}T (i=1 ,29""N)
1

0

0
Af=rAiJ,Ai=[ ) } Bf=EBiJ:Bi=[]
~Wwgi T‘ZCgiwgi s 1

W(t) = {Wl(t):'.., WN(t)}

wi(t) = stationary Gaussian white noise with mean zero.
Thus the nonstationary random input is expressed as

£(t) = Cg(r)u(t) (4)
where

Ce(t) = {m(e)Ca,eee,ny(e)Cy}, Ci = [-wgi®, ~2Cgiugi]

STIFFNESS DEGRADATION MODEL

A scheme of structure treated in this study is illustrated in Fig.2. A
rigid body m is supported by multiple massless column components, whose horizon-—
tal restoring forces hj (j=1,2,.+,M) have hysteresis as indicated in Fig.3. The
characteristics of this structure is basically elasto-plastic with a yield level
Fj , and the first stiffness kij 1is constant while the second stiffness ks j
decreases according to the maximum displacement due to plastic deformation. So
the restoring force hj(y, ¥) ( y = =x-u = relative displacement ) is
represented for three types of deformation, that is, deformation with the 1st
stiffness, deformation with the 2nd stiffness and plastic deformation.

Putting an input acceleration at the foundation u(t) = £(t), the equation
of motion is

y(t) + 2zy(t) + h(y, y) = ~£(t) : )
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where ¢ = ¢/2v/mK; , m = mass of structure, ¢ = damping coefficient of whole
components, K; = 2‘¥1 ky: = 1st stiffness of whole components, h(y, y) =
nglh-(y, y)/K , 3ymbol  t represents a dimensionless time w3t (w3 = vKi/m ).
EQ.(5) is dimensionless, if both sides are divided by the reference length L =
(ﬂSW/m13)1/2 (8y = acceleration power spectral density ). So a dimensionless
expression of yield level is Fj/mVnSle » but symbol Fj ( j=1,2,...,N ) repre-
sents a dimensionless yield level hereafter.

RESPONSE ANALYSIS

For statistical response analysis of the above mentioned hysteretic system,
the equivalent linearization technique is used on the assumption of narrow band
response. As a procedure of analysis, linearization of equation, calculation of
response covariance and estimation of stiffness degradation are repeated at each
time step of nonstationary input.

A linearized equation of eq.(5) is

y(t) + 28zy(t) + ay(t) = -£(t) 6)

where coefficients o and B are determined under the minimum condition of mean
squared error between eqs.(5) and (6).

a = E[h(y, ¥)y]/Ely?], B8 = 1+ E[h(y, y)y1/2zcE[y?]

On the assumption of Gaussian narrow band quasi-steady response, E[h(y,y)y] and
E[h(y, ¥)y] are calculated by classifying the restoring force h into three kinds
of loop according to the magnitude of amplitude of y, that is, the amplitude
being smaller than the elastic limit, being bigger than the elastic limit but
smaller than the maximum amplitude in the past, and being bigger than the
maximum amplitude in the past.

)]

The covariance of response is obtained by solving the linearized equation
(6). To introduced a covariance equation, an augmented system with white noise
input is considered by combining the shaping filter equation (3) and the system
equation (6). A state equation of augmented system is represented as follows:

Z(t) = AZ(t) + BW(t) 7
where
Z(t) = {¥(t), U}, Y(&) = {y(t), 7(£)}T (8

- As Bscf - 0
O

As the state variable Z(t) is Markov process, the covariance equation of Z(t) is
given as follows:

M(t) = AM(t) + M(t)AT + BwBT )
where M(t) = E[{Z(t) - m(t)HZ(t) - m(t)}T] (10)
W =[pj], Di =nSyi = intensity of white noise, m(t) = E[z(t)] =0

To solve eq.(9), it must be noticed that the initial value of U(t) should be the
steady state of U(t) at each time step, because the nonstationary input is gen-
erated by multiplying stationary coloured noise output of the shaping filter by
envelope function.

Theiplastic deformation rate B and the stiffness degradation rate Yj
are defined by the maximum displacement dj and the elastic limit dij

u; = dm/dl'
Y% = kzj/kij = d13/Q2dp - d1j) Elgg

The average maximum displacement is roughly estimated by using the linearized
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stiffness o and the yield level Fy that is

Eldy] = .M, F./a (13)
Therefore the avetage plastic deformation rate and the average stiffness degra-
dation rate are

E[L!J] = E[d-m]/dl_] (14)
E[Yj] = 1/(2E[uj] - 1) (15)

As a calculation procedure, first, assuming the initial stiffness and the
initial response variance, the variance at time step ti1 = At is obtained by
solving the covariance equation (9). Second, the linearized coefficients o and-B
at time t; are calculated by using the variance from eq.(7). And the maximum
displacement is estimated by eq.(13), and the plastic deformation rate and the
stiffness degradation rate are estimated from eqs.(14) and (15). The a, B and
the variance at time t; are used as initial conditions to solve the variance at
next time step tp = 2 t. Repeating the same procedure, the time histories of
the response and other variances are obtained.

The reliability of the elasto-plastic structure under nonstationary random
excitation is evaluated by examining a probability that the maximum displacement
exceeds a critical threshold during excitation period. The first passage
probability is evaluated by assuming Poisson process, in which the average
crossing rate of relative displacement y(t) through thresholds *B per unit time
length is given by using variance of response.

NUMERICAL EXAMPLES

To confirm the adequateness of approximations in the theoretical treatment,
a computer simulation was carried out for some numerical examples.

Fig.4 shows two types of nonstationary random input, whose parameters are
found in Table 1. These inputs are generated by superposing three independent
noises, and dominant frequency decreases in type 3(A) and increases in type
3(B). Two structural components are considered in this example, and the yield
level of the 1st component is fixed to Fi = 2.5, while that of the 2nd component
F, is varied from 0.5 to 3.5. The damping ratio ¢ is 0.05. An example of
simulation results is shown in Fig.5 and the restoring force at each component
is shown in Fig.6. A time history if rms relative displacement is shown in
Fig.7. In this example, the theoretical result (solid line) is in good
agreement with the simulation result (small circle).

Figs.8 and 9 show examples of the time history of average plasic
deformation rate and average stiffness degradation rate, respectively. Fig.10
shows an example of first passage probability P¢ plotted against threshold B.
Figs.11, 12, 13 and 14 show the effects of yield level F2 upon the maximum rms
relative displasement, the first passage probability, the final values of
average plastic deformation rate and average stiffness degradation rate,
respectively. From Figs.11 and 12 it is seen that the response is minimum for
an appropriate yield level, F2 & 1.5 in this example. Further it is evident that
the response is bigger for the input 3(A) with a decreasing dominant frequency
than that for the input 3(B) with a increasing dominant frequency. This fact
signifies that the decreasing dominant frequency of input has same tendency with
the decreasing resonance frequensy of structure due to stiffness degradation.
For F2 < 1.5, the theoretical results is under-estimated in comparison with the
simulation result due to the fact that the plastic deformation becomes large and
the assumption of Gaussian narrow band response is not valid. From Figs.13 and
14 it is seen that the final values of plastic deformation and stiffness
degradation of the 1st component have minimum and maximum values, respectively,
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for an appropriate yield level of the 2nd component F2, while those of the 2nd
component steeply rises up or falls down as the yield level of the 2nd component

decreases.

CONCLUSION

The response of an elasto~plastic structure under nonstationary random
excitation was clarified by theoretical analysis and computer simulations, and
the following conclusions are brought out:

(1) When the dominant frequency of excitation gradually decreases, the maximum
rms relative displacement and the first passage probability are relatively large
owing to the stiffness degradation of structure.

(2) The maximum rms relative displacement and the first passage probability
have minimum value of an appropriate yield level owing to the energy absorption.
(3) The effects of the yield level upon the plastic deformation and the
stiffness degradation of each component were clarified.

(4) The equivalent linearization technique based on the assumption of Gaussian
narrow band response is useful when the smallest yield level is about 507 bigger
than the maximum excitation level.
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