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SUMMARY

A method of adaptive stochastic estimates of dynamic states of hysteretic
structural systems including damage states as well as excitation and system
parameters is presented. By making use of differential representations of hys-
teretic constitutive laws, measures of structural damages and by considering the
correlation between system and observation noises, the problem is formulated in
the form of the It0 stochastic differential equations. The differential forms of
the conditional probability density functions of state variables given observa-
tion data in a finite time interval are determined for filtering, smoothing and
prediction problems, and their solution procedures are described.

INTRODUCTION

The objective of this paper is to find a method of adaptive stochastic
estimates of state variables including measures of structural damages such the
cunulative plastic deformation radio, low cycle fatigue damage factor as well as
excitation and system parameters of hysteretic structural systems subjected to
intense seismic excitations. The proposed method of adaptive stochastic esti-
mates is based on the theory of continuous Markov vector processes, specifically
relying on the Itd stochastic differential equations. By making use of the
differential representations of hysteretic constitutive laws and of the measures
of structural damages (Ref.1), parameter dynamics which describe their time-
variation in differential forms as well as white noise differential equations
governing seismic excitations, the system equations are expressed in the form of
the It0 stochastic differential equations. On the other hand, the observation
equations are supposed to be given in the similar equations to the system equa-
tions taking into account the correlation between system and observation noises.

FORMULATION BASED ON STOCHASTIC DIFFERENTIAL EQUATIONS

The basic equations for adaptive stochastic estimates of hysteretic struc-
tural systems are expressed as the following It6 stochastic differential equa-
tions consisting of system and observation equations (Ref.2):

dZ¢ = F(Z)dt + Gy(ZgddWy,  Z¢ = 2 (1)
d¥y = Hy(Zy)at + Re(Z)aVy, Yy = yg (2)

[}

In the above equations, Zy (nx1) and Yt (kx1) are vector-valued state and output
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variables, respectively, Fy(Z4) (nx1), G¢(2t) (nxm), Hy(Z4) (kx1) and Ry(Zg) (kx
%) are vector- or matrix-valued nonlinear functions of time t and state vector
Zy, and Wy (mx1) and Vi (2x1) are, respectively, normalized system and observa-
tion noises which are Wiener processes with unit intensity matrices and are in
general considered to be correlated processes with a time-dependent correlation
intensity matrix J¢ and are independent of vector-valued random initial condi-
tions, zg (nx1) and yg (kx1). The system equations given by Eq. (1) are by them-
selves the Itd stochastic differential equations which can be constructed by
making use of differential forms of hysteretic constitutive laws and measures of
structural damages as well as the state space equations governing nonstationary
seismic excitations and parameter dynamics.

The differential forms of hysteretic constitutive laws of anisotropic
structural systems under multi-axial deformations are obtained by applying the
conventional plasticity theory as follows:
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Zj_ = 613 - *ai R EL + 1 dZ ?z Xj (3)
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o; = rAleJ + (1 _r)AlJ j o)

In the above equations, summation convention is used, and ¢3, x3 and zj are
restoring force, total deformation and elastic deformation of hysteretic element
of the ith component, x, xP, and z are equivalent total deformation, plastic and
elastic deformations, 5i3 and ci: are Kronecker's delta and dimensionless compli-
ance matrix, respectively, and r and Aj; are rigidity ratio and rigidity matrix,
respectively. The equivalent elastic dgformation z = z(z1,22,"',zm) is deter-
mined from the yield condition with hardening, and governed by a one-dimensional
constitutive law of piecewise or smooth hysteresis, while the multi-axial con-
stitutive law is determined by assuming the associative flow rule and by making
use of the concepts of equivalent force and deformation under multi-axial state.

The d@ifferential forms of measures of structural damages are, for instance,
in the case of nonlinear low cycle fatigue, expressed in the following forms:

b-1
Negn = 20(Nppy)® op™ [x|®
b1

ﬁfpn = ab(nppy)® (1-r

Mxl = enpen (7)

a -a -1 -

) CP IX—-Z‘a 1|X-gzl = gnfpn ’ az y bz 0 (8)
where Ngty and Nepy are low cycle fatigue damage factors in terms of total and
plastic deformatlons, respectively, cy and cp are one-sided ultimate total and
plastic deformations. Specifically for the case where b = 1, Egs.(7) and (8)
reduce to the differential forms of the corresponding linear low cycle fatigue.

Under the multi-axial state the equivalent total and plastic deformations, x and
X - z may be used in Egs.(7) and (8).

The differential forms of unknown excitation and system. parameters are
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given by either of the following equations:

P ° L

ay = 7 aptp , a§p) = a£p+1) s p = 0,1,°°°,P-1 , aéP) =0 (9)
p=0

oy = ot exp(-yt8) , oy = Bt - y8t8-T)ey , a=f=v=8=0 (10)

By making use of the above-mentioned differential forms, the system equa-
tions may be expressed in the form,

dZy = (AyZy + By(Zg))at + (Cy + Dy(Zy))dWy, 2y = zg (1)

2o = [ w28 2% WPt o2t ) (12)
where gZ¢, gZt, MZt and pZy are, respectively, the state sub-vectors concerning
seismic excitations, hysteretic structural system, structural damages, and
excitation and system unknown parameters. The state sub-vector gZy is composed
of xj, ii, z3, 1 = 1,2,°°*,m, x and the state variables which control the
degradation of hystereses.

On the other hand, the observation equations are also given in the similar
form to the Itd stochastic differential equations. The quantity d¥/dt is
observed during a finite time interval [tg,t] with the observation noise.

BASIC EQUATIONS OF NONLINEAR STOCHASTIC ESTIMATES

The solution processes 24 and (Z4,Y4) are known to be Markovian, and char-
acterized by Kolmogorov's forward and backward differential operators:

3* * * #*
LZth = th + LYt + GZth , LZth = LZt + LYt + GZth (13)
and 1 T
Lth = E(Gth)Kvw,Kv MR LTSNS
_1 T
Ly = 3(ReRe) ¥ * Heal, (14)

_1 T 1 T\T
GZthuj - E(GtJth)KUw,KU * E(GtJth)uK¢,uK

where LZ:Yt’*LZI and LY: are forward operators concerning the processes (Z,Yt),

Zy and Yy, GgiY is a forward operator associated with the correlation between
system and observation noises, Lz.vi, Lgzy, Lyy and Gy, v are the corresponding
backward operators and V is a scalar-valued di%ferentiggle function of t, Zt and
Yi. In Eq.(14), summation and differentiation conventions are used.

Under the minimum error variance criterion, the optimal estimator of a
twice continuously differentiable function ¢(Z¢) and its time differential are
expressed as follows (Ref.3):

(15)

ViIA
ot

620> = [on 420 ne (2, ]¥y), 7
8r<0(Z)>y = [(n A2 (ar)arpr(ar]Ty) (16)

where pr(zr|Yy) is conditional probability density function given the observa-
tion Yy in [tp,t]. By making use of Markovian properties of Zy and (Zy, Yi),
the fundamental equations governing the conditional probability density func-
tions and the associated Itd-Dynkin type formulas governing the conditional
expectations of ¢(Z;) are obtained for filtering, fixed interval smoothing and
prediction problems as follows (Ref.2):
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Filtering problem : T = t (Ref.4)

drpr(zrl¥e) = Ly pr(agl¥0)dT + (BT (20) (Re(20)RT(2))

<H¥(ZT)(RT(ZT)R$(ZT))‘1>T}pT(ZT|YT)dVT (17)
- f-— Pl (27 Y1)} Gr(20)IRE (2) (Re(20)RE(27)) " TdVy

and T T
4r<d(Zg)>g = <Ly ®(Z)>7dT + <O(Z){H{(Z0) (Re(Z)RT(27))7

CHE(Z7) (Rp (Z0)RE(2)) ™ T> 0t pdve (18)

+

T
<§E {0(20)6r(2)I¢RE(Z1) (R (Z0)RE(27) )~} >pave,
T

with <¢(Zto)>to, T 2 t5, In the above equations,

dvp = d¥p - <Hy(Zg)>dT (19)

which is called innovations process, and its statistical properties are the same
as the observation noise.

Smoothing problem : T < t and fixed interval [tg,t]

Lz-[p‘l_’ ZT!YT [ pr( leYt) bar

dTpT(ZTI _EETE;T—__—_ pt( ZTlYt )aT - prl ZleT zr E;ngTY_T (20)
and Ly pr(Z|77) Ly {0(Z0)pe(2c ] ¥))

dr<d(2¢)> = <4 (2¢) T >1dT - < G >dT (21)
with <¢(Zg)>4, t 2 T 2 tq,

Prediction problem : T > t and fixed interval [tg,t]

arpr(a|Vy) = Lypr(aglYy)at (22)
and
Ar<d(Z)>y = <Lg®(27)>,dT (23)

with <G(2L)>, TE b

The filtering is the most basic problem in the sense that both in the fun-
damental equation and the Tto- -Dynkin type formula of the smoothing problem, the
conditional probability density function of the associated filtering problem is
included, and that the end condition of the Ito-Dynkin type formula of the
smoothing problem and the initial condition of the prediction problem are given
by the end condition of the associated filtering problem.

CONDITIONAL MOMENT EQUATIONS AND PROBABILITY DENSITY FUNCTIONS

The aim of stochastic estimates is to determine the conditional probability
density functions (Ref.3). Since it is difficult to solve directly the funda-
mental equation which is an extension of the Fokker-Planck equation, truncated
conditional moment equations are numerically solved to obtain the time-dependent
conditional probability density functions (Refs.1-3). The outline of the solu-
tion procedure is shown in the case of filtering problem, since the filtering
problem is the most fundamental and the same techniques are applicable to the
other problems (Ref.2).
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By substituting ¢(Z{) = Z; in Eq.(18), the first order conditional moment
equations are obtained as follows:

dq<Z>7 = <Fp(Z¢)>¢dt + Kpdvg (24)
where ]
- 2
Kp = <Ze81(2) + 85(2.)>, (25)
1 - uT - -
8¢(Z) = Hy(z) (R (2)RT(2, )T - <Hl(2) (R (3)RY(2,)) ">
aT
+ {@{GT@T)JTRRZT)<RT(zT)R$<zT)>-‘} (26)
2 - T -
83(2y) = Gp(2,)I R (Z,) (R (2)RE(2,))" (27)
The It5-Dynkin type formula for estimation error vector, 2T = Ly - LEp>p is

determineéd as

Ap<o(Ze)>y = <Ly 0(Er)>oar + <0(Z7)s)(zy)

3T ~ 2 . ~
+ {§§¥ 6(2;)}85(2)> dv, with <¢(Zt0)>t0, T 2 %, (28)
where
- ~ 1 -~ 4

Lgb = 0¥ wv * Frch e (29)

Q”K(ZT) = GT(ZT)Gg(ZT) - KRy (a)3767 (ap)
- G ()T R (2 )XY + KRy (2)RE(2)KE (30)
Fr(a,) = Frlz) - K fi(z,) (31)
Fo(Z) = Fo(Zy) = <F(Z)>¢ , He(Zp) = He(Zp) - <He(Z¢)>¢ (32)

Substitutions of the following equation inte Eq.(28) mey yield the central
moment equations of higher than or equal to the second order.
(G - 17, (33)
®(Z2:) = Z gz 2 33
T s=1 Ts? st=1 S

In order to evaluate the conditional expectations of nonlinear terms in the
right-hand sides of the conditional moment equations and to truncate the condi-
tional moment equations, an analytical form of the conditional probability
density function expressed in terms of multi-dimensional Hermite polynomials and
one~dimensional Taguerre polynomials is introduced. A fourth order expression
is given in the form,

PT(€1,52,“‘,£n1,ﬂ1,ﬂ2,"',nn2|YT)

n, n

n, 2 A _ .
= WN<€11€2)"°1EH1).H1WG(nj)[} + 121 qu Bin%(§1,£2,"‘,£n1)L§BJ 12Vjﬂj)
j= = =
n, n; n, o B Py
+ 'Z .Z_ Z BiijiJ(£19g2"":gn1)L§Bk zvknk)
i=1 j=i k=1
n,-1 n, ) ]
+ Z Z CijL561—1EVini)L§BJ_12VjUj)
i=1 j=i+1
n; o, Lo _ L
+ Z Z DlJH%(E'] yEQ;"';gn_])LéBJ 12\’,}“3)
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191 joi kmq HERTTTRT MR VeNk 34
n, n, n,-1 n, .
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where  E; = E<EDTE By =gy - <gop 5
2 ~2 -1 _ ~2 -1 ~
Bj = <nj>T<nj>T , Vj = <nj>T<nj>T s nj = nj - <nj>T

In Eq.(34), wy, H% and Héj are an nq-dimensional normal density function, the
first and second order nq-dimensional Hermite polynomials, and wg, L1(B'1) and
L2(8'1) are the gamma density function and the first and second order genera-
lized Laguerre polynomials. The marginal density functions concerning Gaussian
variables £; and gamma variables nj are, respectively, given by

pT(511£2’°"’5n1|YT) = WN(€1’£2a""£n1) (36)
and n,-1 n
12 $ z (B3-1 (851
JTos Y.)=1 01+ C.:Li"1 N )L N 7)

By making use of the definitions and orthogonality relationships of the
polynomials, the coefficient functions appearing in Eqs.(34) to (37) can be
expressed in terms of conditional first order moment functions and higher order
central moment functions up to the fourth order. Substitution of Eq.(34) in
Eqs.(24), (28) to (33), yields the truncated fourth order conditional moment
equations which are solved numerically to determine the time-dependent condi-
tional joint probability density functions as well as optimal estimators of
statistics of state variables including measures of structural damages and
unknown excitation and system parameters.

CONCLUDING REMARKS

The adaptive stochastic estimates of hysteretic structural systems are
formulated in the form of the Itd stochastic differential equations. The funda-
mental equations and the associated It0-Dynkin type formulas are given for fil-
tering, fixed interval smoothing and prediction problems. The solution tech-
niques of the time-dependent conditional probability density functions and the
optimal statistics of state variables are shown by introducing a finite mixed-
type series expansion of the non-Gaussian density function in terms of multi-
dimensional Hermite polynomials and one-dimensional Laguerre polynomials.
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