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SUMMARY

Performed in this paper is the stochastic response analysis of the piece-
wise-linear (p.w.l.) hysteretic structural system under physical excitation
noises. We develop an improved linearization technique which produces a direct
and simple formulation and meanwhile yields a very reliable approximation to the
response. Furthermore, in order to apply this linearization technique to the
p.w.l. system we present a technique to smooth the p.w.,l. hysteretic system.
Finally, the 4th order cumulant response equations are derived to study the
effect of the non-normality of the excitation upon the stochastic response.

INTRODUCTION

Structural systems under dynamic loading usually exhibit nonlinear
hysteretic behavior and for reasons of safety and economy, such behavior has to
be taken into account in design and seismic response analysis. Generally, most
of this behavior is expressed by a piece-wise-linear(p.w.l.) hysteretic system.
To the stochastic response analysis of the p.w.l. structural system the
stochastic linearization method seems to have the greatest potential in terms of
practical application. However, it has been pointed outl) that the existing
linearization method underestimates the exact statistical moments of the
response of the p.w.l. hysteretic system.

On the other hand, the excitation noises imposed in the analysis have been,
up till now, assumed to be Gaussian white (GW for short) processes or filtered
GW ones which, in fact, are essentially processes dealing with GW excitation.
However, physical excitation noises in actual situations are generally Non-
Gaussian and Non-White and the effect of the non-normality can not be considered
to be negligible in some situations2)3),

This paper is to perform a simple and direct construction for the
stochastic response analysis of the p.w.l. hysteretic system under physical
excitation noises. First we develop an improved version of the linearization
method on the basis of the concept of the weighted least-square minimization.
Next in order to apply this technique to the p.w.l. system we present a
technique to smooth the p.w.l. system in an equivalent probabilistic sense.
Finally to study the effect of the non-normality of the excitation upon the
stochastic response the stochastic response equations characterized by cumulant
functions instead of the conventional moment functions are derived.
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PHYSICAL EXCITATION NOISES

Normality and Whiteness

The term "physical excitation noises" refers to the excitation processes in
practical situations. Generally they are non-Gaussian non-white. Theoretically,
any random process &(t) can be completely described by its cumulant functions

ke (ti,...,ts)e.In terms of ks(t1,...,ts): , we can define the normality and whiteness.
By normality we mean that the process #(t) satisfies

ks (tt,...,ts)e = 0 53, 4,... oy
On the other hand, whiteness describes that &(t) is delta-correlated:

ks (ti,...,ts)e = Ks(t1) £ 0 (timte) 8 (tita)... & (ta-ts) s=2,3,... @

In terms of the normality and whiteness, the physical excitation noises can be
classified into:

1) Gaussian White noise (GW) 3) Non-Gaussian White noise (NGW)

2) Gaussian Non-White noise (GNW) 4) Non-Gaussian Non-White noise (NGNW)

Replacement of a NW noise by a white process

Even when a linear system is subjected to a NW noise &(t) which can not be
expressed exactly by a filtered white process, the stochastic response can not
be regarded rigorously as a Markov process and therefore the most powerful
Markov theory can not be applied directly to the stochastic response analysis of
the system. However, for the time intervals which are considerably greater than
the correlation time Zeor , the stochastic response becomes a multi-dimensional
Markov process asymptotically‘*) and then we can show that the NW excitation &(t)
essentially acts as a white noise &*(t) having the same intensity functions Ks .
Here Tcorand Ks are given respectively by

! « T 1 s-2 3 ®
Tcor™ _%‘Sfldfl Sdte... Yks(tl,...,ts)éd'cs—l (3) L:S‘.. g (tj,...,ts)édfi...drs—l (4)
e -0

e e -00

(z1=te—t1,... Ts-1=ts~11)

As a consequence, we propose herein that the NW excitation noise &(t) be replaced
by a corresponding white process &*(t)with

ks (t1,...,ts)e*= R 8 (T1)... & (Ts-1) 5)
The concept of the replacement technique is illustrated in Fig.l. As has been
shown in Referenced), this technique produces a rather satisfactory
approximation to the response when Zcor is small (<1). For a physical excitation
noise with zcor>1, it is necessary to adopt a proper linear filter to simulate
the noise. Anyway, the replacement technique is of great interest in the sense
that it makes the application of the Markov theory possible.

P.W.L. HYSTERETIC SYSTEM

The term "p.w.l. hysteretic system" refers to a nonlinear system in which
the hysteretic characteristics consist of piece-wise-linear behavior. This
system involves a bilinear model, double bilinear model, poly-linear model,
origin-oriented model, peak-oriented model, slip model, Clough's model, and
Takeda's model, etc.. The differential formulation for the system has been
developed by a lot of researchersf). We have developed a somewhat different
differential formulation’). The nondimensional nonlinear restoring force of the
p.w.l. hysteretic system can be described by

£+2h% + ax + (I-a)z = f(t) ®)
where a is the post-to-preyield stiffness ratio, x is the displacement; and z is
the hysteresis and related to % through a first order differential equation in
the following general form:

=R [1-0 ) U4z-1) U0Uz-1)] )
Here U is called the U-step function and defined by
=i
= (5 35 ®
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and A is called the hysteresis coefficient which depends on the characteristics
of the individual p.w.l. hysteretic models.

IMPROVED STOCHASTIC LINEARIZATION TECHNIQUE

Formulation of the Improved Linearization Technique
Generally, nonlinear systems can be divided into softening systems and
hardening systems. Without loss of generality, consider a symmetric nonlinear

vibration system: g_%( =G t) + P ®

where F(t) is the n dimensional Gaussian white excitation vector with =zero
mean. Linearize the equation of motion (9) into
%’é = BX + F(t) a0

where the equivalent coefficient matrix R is to be determined so that the linear
system (10) will produce the most approximate solution to (9). In estimating R,
the difference of the two systems, i.e.

e® = G t) - KX (1
should be committed. A logical choice to select R is to require that the mean
squared value of e(X) multiplied by a weighting function W(X) be a minimum, i.e.

Elet (e X)W ]—nininun (12)
where E[x] denotes the expected value of x and the prime t means the transpose.
The weighting function W(X) can be considered to be in accordance with the
difference between the non-Gaussian distribution of the response x in the
nonlinear system(9) and the normal distribution of the response in the
corresponding linear system(10). Of course, this difference can not be described
precisely but only be assumed qualitatively. Thus, in Reference8) the weighting
functions for a hardening system and a softening system have been supposed to
assume the following forms:

1 .
W(X)=exp {-- é‘X‘S“X} (for hardening systems) (13) W(X)=exp {gX‘S“X} (for softening systems) (14)

as shown in Fig.2. Here S is covariance matrix. On imposing (13) and (1l4) and
after some arrangements, the condition (12) leads to the direct form of the
coefficient matrix R as follows
dgi . .
ri;=E [——* 2 ] (for hardening systems) (15) ri;=E [——*— 4 ] (for softening systems) (16)
oX; X:r;—X X Xfﬁgx
It is of interest to compare this version of linearization to Atalik & Utku's
technique9). It has been proven8) that the accuracy of the improved technique is
over 10% higher than the existing ones.

J8i

Application to P.W.L. Hysteretic System

Consider the p.w.l. hysteretic system (6) under a GW noise f(t). Clearly,
expression (7) involves the U-step functions and therefore has discontinuous
differentiations with respect to the state variables. This discontinuity
prevents application of the above technique to the system. Consequently, it may
be quite reasonable to search for a smooth hysteretic system which is
essentially equivalent to the p.w.l. hysteretic system. By "equivalent" we mean
here that the smooth system and the original p.w.l. system have similar
hysteretic characteristics and that meanwhile almost the same probability
information about the concerned variables can be derived after smoothing as
well. This aim can be achieved by approximating the U-step functions U(x) and
U(z-1) through

1 *>0

Ux) = -%—(1 + sgn ®) = ( 0.5 %=0 (17a)
0 <0

U(z-1) = -%- lz|"(L+sgnz) (lz|=1) for a positive n Qam)
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As a result, we can obtain the smooth differential expression:

2=K[x-05 Jz|"x-0.5 |x] z lz|"'] for a positive n (18)
where K is the smoothed hysteresis coefficient and can be obtained from A by
making use of the same smoothing approximation. It is interesting that the
hysteresis expression (18) of the smooth p.w.l. system is similar to Y.K. Wen
modellQ0), Parameter n in (18) is to control the smoothness of U(z-1) and the
transition of the response, as shown in Fig.3. We should notice that parameter n
be so chosen that we may obtain the same probabilistic information about what is
concerned after smoothing and meanwhile may apply the linearization technique.
The propriety of the smoothing technique is verified by applying to the bilinear
model and shown in Fig.4. Incorporating (15) to the p.w.l. system yields the
equivalent linear system:

dX _
a%—RXWLF 19

here G- [36! (10a) ;ﬁ] (20a)  F = [E};] Q) X - {g] (200)
b =1—(~J:_—5) [2; : Z:; ( )r( )r ( H:l )(1‘102)“’2;3""‘6;" + i"_';‘r ( ";1 )a] (1a)
(AN ) () () oot o (2 i o

7
a=E[A] () o= "[izl (218 ) = S ettt dt (2le) k =even (21f)

[oF Xop% a

<

Its application to the bilinear model under GW noises has been illustrated in
Reference8) as shown in Fig.5 where parameter n has been decided to be 1.

STOCHASTIC RESPONSE EQUATIONS

When the p.w.l. hysteretic system is subjected to a physical excitation
noise &(t) , the response exhibits the non-normality. Therefore, it is desirable
to characterize the stochastic response in terms of cumulant functions. From the
viewpoint of engineering, the 2nd and 4th order cumulant responses are most
concerned to us. Since the 2nd order cumulant response functions are the
elements of the conventional covariance matrix response, only the 4th order
cumulant response equations are developed here. For this purpose it is necessary
to determine k¢ (x"2"%"€) , (vwths3, nmh=1~3). Generally, their proper values are not
obvious immediately. In Reference3), we have presented an approach to decide
ke x"57E°) (otp=3, n,m=1~3)for a linear system on the basis of the Markov theory and have
obtained the results as follows.

ke x"%"E%)=0 (n#m=3, n=1) (22a) ke (#38°) = *%— B(t1)Qa (22b)
where:* (t)is a NG white noise with
ks (4, t1, tz, ts) e =B (1) & (t-11) & (t-1t2) & (t-1a) (23)

For a physical noise £(t)with small Teor , the above expressions still hold after
we apply the replacement technique to¥(%).

At this stage we can incorporate the improved linearization technique
approximately after smoothing the p.w.l. hysteretic system. As a result, we have
the eguivalent linear system (19) except that £(t) is replaced by &(t) .
Multiplying (19) by x"z"%" (rwh=3, n,mb-1~3) and taking cumulant operation after
making use of (12) and (13) leads to the 4th order cumulant response equations.
For a special case a=1, i.e., for the corresponding linear system, we have the
following 4th order cumulant equations.

ke (x4) =4ks (%) (242) s (%) ke (%*)-3ka (222)-6hks (%) (24d)
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Fig.6 4th order cumulant response history
the bilinear model (case 2)

for the corresponding linear system

Explanation of the Parameters in the Figures
O: standard deviation P: correlation function

T: normalized time by the natural period(27m) of the system
So: 2nd order intensity of the noise Qe: 4th order intensity of the noise
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ke (%) =3k (x2%2)~2hka (x°%) -ka (x*) (24b) ke (%%) =B(t) Qa-8hka (*) -4k (x°) (24e)

ke (x2%%) =0ks (xi®)—4hka (x23%)-2ks (3%)  (24c)

Some examples of the 4th order response for the corresponding linear system
are given in Fig.6. We should mention that it is necessary to adopt a proper
linear filter in the case of a physical excitation noise with large correlation
time before applying the present theory.

CONCLUSIONS

In order to perform the direct construction of seismic response analysis
for the piece-wise-linear hysteretic system under physical excitation noises,
the following useful and reliable approaches are presented in detail.

1) An approach to replace a non-white physical noise by a white process is
described. This approach yields a good approximation to the response when the
correlation time Tecor of the excitation is small, although for a physical
excitation noise with large ZTcor it is necessary to adopt a proper linear filter.

2) An improved version of linearization method is developed on the basis of
the weighted least-square minimization. This version produces a direct and
simple formulation and meanwhile yields very dependable approximations to the
response even for the case of large nonlinearities.

3) In order to apply the above linearization technique to the piece-wise-
linear system a technique to smooth the piece-wise-linear hysteretic system is
presented.

4) Finally the 4th order cumulant response equations are derived to study the
effect of the non-normality of the excitation upon the stochastic response.
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