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SUMMARY

A simplified methods, which is referred to as the iteration parametric
method are presented for estimating the response of elasto-plastic system
subjected to stationary earthquake excitation. This may contribute to the
development of reliablity-based criteria for earthquake-resistant design.

INTRODUCTION

In earthquake-resistant design it is wusually required to calculate the
response of elasto-plastic state under earthquake excitation. The stiffness
and damping of structural system vary during the earthquake excitation. Due
to the influence of random excitation the variation has the nature of randomness.
So the elasto-plastic system under random excitation can be considered as random
structures with random parameters. The varying stiffness can be considered
as random stiffness. The equivalent stiffness will be obtained through
statistical calculation of random stiffness. The equivalent dampling is obtained
by statistical calculation of the variation of damping and hysteretic energy
dissipated and so set up random differential equation with random parameters.
THe response can be solved by iteration procedure. So the method is called
iteration parametric method.

It is shown that the numberical results obtained are satisfactory.

1. SINGLE DEGREE OF FREEDOM SYSTEM

The Equivalent Stiffness Elasto-plastic system with hysteresis characteristic
is regraded as system with random stiffness. That is, stiffness is considered
as random variables. If random variable is the normal distribution, statistical
properties of random stiffness (the standard deviation of the displacement
response) is obtained. Assume that the displacement response of structure during
earthquake is narrow gaussian processes. The force-displacement relationships
of theses system are as shown in Fig.l.

There are two different types of vibrations
1. The random stiffness of system before yielding is K

Ki = K x < %o (L)
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where Ki stiffness variable K; elastic stiffness.
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Fig.l Hysteresis model

2. Equivalent stiffness of system after yielding is K,It is expressed as

xtan ey + (xgtand, - xgtan 7%)
Ki = 1%k ul 0 kZ K X > Xgo (2)
X
where x is displacement response of system. It is a random variable, therefore K
is also random variable. Let x is normal distribution. Based omn to equivalent
energy principle, equivalent stiffness K is obtained.

The expected value of equivalent deformation system is
E[1/2Kyx2] = 1/2K E [x?] = 1/2K; 0% (3)

The expected value of actual deformation system is

1

exp ( =) dx
/275, 2 oy

E[1/2K{x2] = 2 [1/2[?&2

o

v 12 g Ean tch (rotan c mxotanyd) 1 Xl @)
%, X ‘/ﬁfx 26:2:

Let expected value of deformation energy of equivalent system equal to
the expected value of deformation energy of actual system. Thus leads to
equivalent stiffness

tan 7

Ky = 2 [(tansty - tan7oq) § (—2) - ——c K] g (5)
X

where X

§(—2 ) == f; -5
—_——) = === exp(- —) dx
Ty /2T A 2

Therefore, the equivalent stiffness Kj is a function of the variance of the
displacemeht response. Where xy, B, K, x, are constants.

The variance of displacement response « in stationary case is constants,
although the response is random process.

The Egivalent Damping The equivalent damping is obtained by statistical
calculation of variation of damping and hysteretic energy dissipated.

1. Power lost through damping dissipated. Let a representation of stationary
random process X(t) is

X(t) = A sinwt
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where A: amplitude random variable
w: circular frequency

Average power per cycle
P (o
4= 7 jo Cxxdt

where C is the damping constant.

Expected value of Wy is (Suppose A is mnormal)

2 % 2 A2 2 .2
E[wd] = L [ ___A_ exp ("“é'f‘)dA = Lo dx (6)
2 o 2T Gy 26, 4

2. Expected value of average power lost through hysterectic energy dissipated

2
2wx Ksin(1-7) % T -X, X pd
E[wy] = 2 0% [—2 exp(—%)- =2 erfe(=—>)] )
msin ®Kcosy Xy 27 20, 2 V2 oy

Assume that, power lost through damping and hysteretic energy dissipated
of original system is equal to power lost through damping energy dissipated
of equivalent system. Equivalent damping Cj; is obtained.

2

8x,Ksin(1l-7) & ¢ -X X
€l = C+—z 0 %k [—= exp(—%)- — erfe(——)] (8)
@0y msin¥Xgcospeq 2T 204, 2 V20,
The equation of motion of the equivalent linear system is
M; X + C1x + Kyx = -MjX, (9)

where Mj: Mass.
K1: Equivalent stiffness.
C1: Equivalent damping.
¥o: Earthquake excitation,stationary random process.
X,%,¥: the relative displacement, velocity, acceleration, respectively.

Eq.(9) is rewritten as

%+ 2fdox 0 gx = <%, (10)

C1

ConvmM . TomE

If power spectral density of excitation X is Sg(w). Thus, power spectral
density of response is

Sx(w) = [H)|? sg(w) (11)

where |H(w)| ? is the transmission function.
Sg(«d) is input power spectral density

1
2 2 2 2 2
(Wy ~w )+4€u_)ou)
The variance of response then is obtained as

[H(@)[? =

5p = Ry(0) = fsx(»o)d‘o (12)

-0
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If x is white noise process, power spectral density is constant.
Sg(w) = 84 -0 << 4+

The variance of displacement response is obtained as
2 T So
Ox = — 3 (13)
Zpdo
is obtained by iterating using (5), (8), (11), (12).

The numberical results obtained are satisfactory. This method has the
advantages of stability, fast convergence, and convenient computation.

Example 1: Single degree of freedom system

M=30000kg K=1000,000kg/sec? «J =57/sec 7=0.5
T=1.08sec 8=0.05 tge =1 o =45
xo=3cm 80=697.7cm*/sec?

Lead to gy = 9.492cm.

Example 2: Data same as example 1, but

2 2 2
Sy = [750 '1.238(14 =] /[(1- 2 y2 2
147.8 242 147.8

Its iteration process may be written as follow

1 Kp=679211 C1 = 29740 Oy =7.024
2 = 741582 = 25578 =7.358
3 = 747621 = 25550 =7.415
4 = 747678 = 25450 =7.425
5 = 747678 = 25450 =7.426

2. MULTIDEGREE-OF-FREEDOM  SYSTEMS

It has been pointed out that the hysteretic system and elastic system
have the same ability of absorbing power. Their response of system to
earthquake ground motion before yielding can be analyzed by mode-superposition
method, in which the equations of motion are transformed model coordinate.
The equation of motion in structural coordinate for earthguake excitation x(t)
in the x-direction are

Mx + Cx + Kx = -M{1llx, (14)

mass matrix

damping matrix

: stiffness matrix

1}: unit column matrix

where

~—~AROoORX

The structural displacement can be expressed as
x=0Y (15)

where ¢: mode shapes matrix
Y: the modal coordinate

Eq.(14) transforms into a set of uncoupled equations in the modal
coorddinate Y.

V-286



s . _ T -
Mj¥5 + Cy¥g + Ky¥y = -03 M {1hx (16)
i+ (C/MpY + Ry/MpYy = = ¥ 5%, (1n)
where Mj = 0?M(Dj
T
Cj = d)TCCDJ-
Kj = 0 Koy

-~

3 ¢§M [1]/Mj fundamental mode participation factor.

Power spectral density to each mode shapes by excitation in view of Eq.(15)
may be computed from

T
SoldjM{1}]*®
B (18)
M;
let ))oj is the given pseudo-yielding displacement of j mode shape, ’)oj can be
obtained in terms of x = @

xo(1) = 01(1) Vo1 + ¢2(1) Yoy + «+-
x0(2) = 01(2) Vg1 + 05(2) Yoy + ++ (19)

where x5(1), ... is given yielding 1 nodal point displacement.

For j mode shape we obtain equvalent stiffness
£8 1%

-~

- ; Joj .
Ky = 2 [(tgey - tgq¥) & (c_xj) 3 I &5 (20)
equivalent damping
~ 8V, 5 K; sin(l-%) oy . -2 Jas Vo
Gy = Cj+—t o [ —Lexp (—25) - Dlerfe(—=21)] (21)
sinxycosy«yq 0y 2m 2 Oy 2 xj

then variance cf displacement response to white noise is

2 TM[OTM {1]}*

SR, s (22)
LA M2
2 B33 M
where —_—
a Cs ~ _K_]_ 2 2 2
VTR @3 = Txj =) Ixj
2 M_]Kj MJ

The variance of total displacement response

2 n 2 2
Gtotalx = zl ¢J ij (23)

The variance of total velocity response

2 n 2 |2 2
Ttotalx =% W j 03 %xs (24)
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Examle 3: Three-degree-of -freedom- system.

M = 180t, My = 270t, M3 = 270t,
Ky = 90MN/M, Ko = 196NM/M, K3 = 245NM/M,
xo(1) = 5.5c¢m, Xo(2) = 3cm, %x0(3) = 1.5cm, /
1=0,=0.05, 7 =0.5, So = 697.7m%/xec?

using iteration method we obtain 2
Oforal x(1) = 129.64cm®,  Opqpay x(1) = 11.38em J
Ofotal x(2) = 57.67em® ,  Oporal x(2) = 7.59cm s ,
Stotal x(3) = 14.42em® ,  Groral x(3) = 3.79cm ,

CONCLUSIONS

Based on experience with multidegree of freedom nonlinear systems, an

alternate approach appear to hold consider able promise of reduing computational
time for such problems.

This approach consists of modal decompostion techinques combined with

iteration approch this combined numerical/analytical approach appears to merit
further investigation.
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