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SUMMARY

A New degrading bilinear hysteretic model is to proposed in order to
simplify stochastic seismic response analysis. Using this model, the response
of a SDF hysteretic system subjected to gaussian short noise excitation is
examined by equivalent linearization. An ordinary differential equation is
derived for the covariance matrix of the response. Comparison with the equa-
tion derived by using the Fokker-Planck approach shows that the two approaches
lead to completely same equation of covariance matrix. Numerical examples
show the availavility of this approach.

INTRODUCTION

In recent years, there has been considerable interest in the problem of
calculating the response of hysteretic systems subjected to random excitations.
This problem has been approached form many different point of view including
linearization (Ref.1), the Pokker-Planck approach (Ref.2), the power balance
approach (Ref.3) etc.. A number of different models for hysteretic behavior
has also been investigated ranging from the bilinear hysteretic model 'to
model specially formulated to facilitate analysis. However, due to analytical
complications, except for the work of Wen (Ref.4), Asano (Ref.5), Ishimaru
(Ref.6), there has been relatively little effort directed forward analytical
studies of systems exhibiting more general curved hysteretic behaviors.

The paper is to propose a new degrading bilineaxr hysteretic model for
stochastic seismic response analysis. This model is formulated introducing a
degrading property parameter into the well known bilinear model. The main
purpose of this research is to simplify the stochastic seismic response analy-
sis by using the proposed model to approximate complicated models such as the
Clough's model in analysis. The approximation is realized in this paper by
determining the value of the degrading property parameter under consideration
of energy absorption equivalency of the two models. With introducing an =
auxiliary variable, the hysteretic restoring force can be expressed into
Fourier integral forms so that it becomes possible to use the equivalent 1li-
nearization or the Fokker~Planck approcah for hysteretic systems with this
model.

The differential equation of covariance matrix of state variables is
derived directly by using the equivalent linearization approach proposed by
Wen (Ref.7) for systems subjected to gaussian short noise excitations. This
derived equation shows complete equivalency with the equation derived by the
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author in another paper for same systems usings Fokker-Planck approach propos-
ed by Kobori et al. (ref.8,9).

THE HYSTERETIC RESTORING FORCE MODEL

The stiffness k1 of proposed model, as shown in Fig.1, is given by
(Ref.10)
ra{z"+z")+n (1)

K=k alz"+z7)+n

in which, o .z*and z- are degrading property parameter, positive and negative
maximum plastic displacements occurring in response, and r , n.are the second
slop ratio.the maximum elastic displacement, respectively.

Because of the relation to z*and z°, k1 decrease with developing z"and
z” in response. In the other hand, the decreasing ratio of k1 is mainly con-
trolled by~ . For example, it is clear from Eq. 1 that this model is simply
equal to bilinear or peak-oriented model as « is given 0.0 or 0.5. It means
that this model can represent different degrading level up to peak-oriented
model simply by giving « from 0.0 to 0.5.

Fig. 2, shows comparison between Clough's model (loop OABCD"EFB) and the
proposed model (loop OABDEGB). If « is given by

(—r=z*)/4m, dQ/dz<0

e= (m—rz")/4m, dQ/dx>0 (2)

where Q is restoring force, then energy absorption of the two models are
equivaltnt, because of the equivalency of the areas of A BDD" and AEGB to the
areas of .. BCD" and .. EFB, respectively.

As the narrow band response is expectable under earthquake when system
demping is small enough, considering energy absorption equivalency, it is de=~-
sirable simplify the stochastic response analysis by the proposed model.

ANALYTICAL REPRESENTATION OF RESTORING FORCE

Introducing an auxiliary variable y (Ref.10) the hysteretic characteristic
of proposed model can bertransformed to non-hysteretic :characteristic analyti-
cally, And y is defined as follows:

§=L{tr22= v+2lalz" +27)+ 0l Qy)/ n—y] 8(2) (3)

in which v, Q(y) and J( ) are velocity dx/dt, pseudo-restoring force and Dirac
-0 function, respectively.

For the proposed model (Fig.1) the restoring force Q(x,y) and y can be
expressed in the Fourier integral forms finally as

Qlz, y)=rz+1—r)n/(zilalE[z* ]+ E[z"])+ ml]

X_/:(l/ﬂ’) sin [Bla(E[z*]+ E[z"])+ n1] exp (iBy)dB (4)
§=v+1/(x) /‘: /*_ (1/8%) sin [BlelE(z*]+ E[2"])+ ]

Xexp li(By+ rvldg dT-(l/z)j: y exp (iyv)dy (5)

iH Eq. 4 , 5 an approximate treatment has been used in order to overcome
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the analytical difficulty, namely expectations of =z*and z~ has been used in-
stead of z*and z~ . Furthermore, in the general cases, the expectations are
equal to each other and can be expressed in one symbol as E(z]. The value of
E(z) can be evaluated numerically in analysis making use of folowing formulae

(Ref.10)

Elz]=A/B
Ai=05(0,/v27 ) [1=2 erf(o/ 0: v/ T— %0 ) +pce exp (~ 73/20%) 1142 erflpey 710/ 02 v/ T— 253 )]
B,=1+035 4:[05 0yv1—p%, exp|~7it/2041~oko)l/ (270z)

(6)

+0.5 pry a0y exp (— 78/201) {1+ 2 erflpey T/ 01— p2o W27 0%]

erf(z)=(1/2x) [ ¥ exp (—05¢) dt

(7
(8)

Fo=no+ Elzi. ] +05 de E(2,.,]
Elz]=E[z.]+05 d¢ E[z,,]+054¢ E[z]

in which, Cx, O0v and Pxv are the standard deviations of x,v and the coefficient
of correlation of x and v, respectively.

APPLICATION OF EQUIVALENT LINEARIZATICN

The dimensionless equation of motion of the single degree of freedom (SIF)
hysteretic system may now be expressed as

X+2bw o X0 3Q (X, ¥ )=£(t) (9)

y=L(V, ¥)
in which, f(t) is a tase acceleration and h, @, are the viscous damping ratio,
the natural frequency of the hysteretic system (r=1), respectively.

Making use of the method of equivalent linearization (Ref.11), the non-

linear Eq.9 can be reduced to the following linear set.
¥+2kw, ¥+C 0h+Cr0ly =1 (1) (10)

T =CaV+C,y

The equivalent coefficients C1-C4 can be evaluated assuming gaussian prob-

distribution of the multidimensional response process. This yields

ability
C, =r
Cy = 2no(1-r)xers{(20E(z]+N4]/0}/(2¢E(2 I4N.) (11)

Ca = 1-PyvOyCye/Oy

Cy = —2[1—erf{(2aEEz J‘l’nu)/cy 1-p zvy}]/.zﬁ oV
where 6y and pyv are respectively the standard deviation of y and the coeffi-
cient of correlation of v and y. And erf( ) is the error function.

RESPONSE OF COVARIANCE MATRIX

Referring to Ref.11, the covariance matrix of response of a SDF linear sys-
tem subjected to a gaussian short noise excitation can be simply determined.
Introducing the three state variables:xi=x, x2=v. x3=y, BEq. 10%can then be re-
written as a system of first order differential equations as follows:

{x¥=0c3{x}+{F}
in which (12)
= T
{Fl=l0 f@® 0] (13)

and
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0 1 0
(Gl= —Cxwf, -2kw o - Cz“zn (14)
0 C 3 C .
Assuming the covariance matrix of x to be (k) where kij=E (x;x; } and the earth-
quake~like random excitation f(t) to be a gaussian short noise process with

zero mean, special density 2MSy, and envelope function e(t), it may be shown
that the covariance matrix (k) satisfies the following differential equation

(kJ=(GJ(x)+(XI(6IT+(R] (15)
in which
(s) 0 0 0
B) =| 0 2nS,e(t) O
0 0 0 (16)

The non-stationary covariance matrix of x can be evaluated by solving
Eq.15 numerically on the basis of a step-by-step integration method.

COMPARISON WITH FOKKER-PLANCK APPROACH

The author has reported a solution technique for the random response of
hysteretic systems with the proposed restoring force characteristics based
on use of the Fokker-Planck approach. The differential equations of the ele-
ments of the response covariance matrix corresponding to Eq.15 are given as
follows (Ref.10):

fex = 2Xxv

“&yy = 25yxyy + ngkv‘,

kyy = —2w5B xkxv—4wohkvv—2w15ykvy+258o
ny = nygy‘i‘e; vkx'v"i'kyv
—wiBxKxyx—=20 o hky v By kyytkyy

I

Kyv

(17)
kyy = —wiB xlixy—(zwoh“gy)kvy_wﬁsy kyytevikvy

in which

B.=C1; By=Cg Ey=Cy Ey=C, (18)
A careful comparison of the two sets of Egs.15,16 and Eqs.17,18 indicates

that the equivalent linearization and the Fokker-Planck approaches lead to

completely same differential equation of covariance matrix.

The reason of the equivalency of the two approaches for the system men-
tioned may be as follows: By introducing y the hysteretic system is transform-
ed to non-hysteretic system analytically. And then under gaussian short
noise excitations the system response is Markov process. Furthermore the
gaussian process assumption of response implies that the Fokker-Planck app—
roach treats the system as linear system. Exactly, the linearization is used
implicitly when evaluating the coefficients Bx, By, &y ,5y.

NUMERICAL EXAMPLES
As an example .of the application of the proposed approach, consider
system defined by 7=1, w=1 and h=0.01. Let the envelope of the excitation
be a step function, e(t)=u(t).

AS for ¢, the following formula is used in order to compare with Clough's
model .
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e=(n—rE[z])/4m (19)

Monto-Carlo simulation study has also been undertaken for same system
but with Clough's model, an ensemble size of 200 was used for this study.

In Figs.3-5 0x, fv. and E[z] are plotted as a function of time t for
values of 2mS, equal to 0.8, 0.4, and 0.2. Values of r are equal to 0.0, 0.1
and 0.3.

An examination of Figs.3-5 indicates that the simulation and analytical
results are in fair good agreement regardless the fact that in the analytical
study the proposed model has been used instead of Clough's model.

CONCLUSIONS

A new degrading bilinear hysteretic model is proposed in order to simplify
the stochastic seismic response analysis. Comparison of the analytical and
simulation results shows that the proposed model can be used to approximate
complicated models such as the Clough's model in stochastic seismic analysis.
The approximation can be realized by determining with concept of energy ab-
sorption equivalency.

Comparison between the equivalent linearization and the Fokker~-Planck ap-
proaches for the same system shows that the two approaches lead to completely
same differential equation of the covariance matrix. Because of the simplicity
and the flexibility of the equivalent linearization approach to more general
structural systems, it may be said that this approach is more available and
poverful to these systems.
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