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SUMMARY

This paper illustrates the application of an interpolation function method to
the stochastic FEM of structures which have uncertain properties when they are
subjected to earthquake loading. In the method developed here the nonlinearity of
the response is approximated by an interpolation function similar to a frequency
transfer function of a SDOF system. The traditional perturbation method poorly
approximates nonlinearity in the response caused by variance in material
properties. The interpolation function allows us to better model the nonlinearity of
response. Monte Carlo simulations are performed in order to verify the accuracy of
the proposed method. Consequently it is found that the technique proposed here is
well suited for actual dynamic response problems.

INTRODUCTION

The stochastic finite element method (SFEM) which is based on the first
order perturbation method has been developed in order to solve many probabilistic
structural problems, and has been widely used as an efficient and accurate method
in safety and reliability analyses 1)2)3). As for dynamic problems , however , the
SFEM is not always accurate when an analyzed structure has uncertain
elasticities and/or densities 4). The reason is mainly that variations of mass and/or
stiffness matrices change eigenvalues of the structure and then partial derivatives
of the response with respect to probabilistic variables cannot be approximated to
be constant.

In this paper an interpolation function method for the frequency response
analysis using the SFEM is presented. The form of the interpolation function is
similar to a frequency transfer function of a SDOF system.
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This idea is based on an interpolation method with respect to a frequency axis,
which is generally used in the frequency response analysis, and which is expanded
with respect to an uncertain parameter axis instead of a frequency axis in the
proposed method.

ANALYSIS PROCEDURE

The outline is as follows;
(1) in order to get the frequency transfer function H (w;e =g = 0) and its partial
derivative with respect to uncertain parameters, éH (w;e)/dal, =0 , the well-known
SFEM based on the first order perturbation method is performed,
(2) the interpolation functions to each uncertain parameter are determined by the
values of H(w;e=0) and aH (w;a)/dals =9,
(8) statistical values of the dynamic response , the mean and the variance, are
computed by Hermite-Gauss quadrature schemes (HGQ),
where o is the circular frequency ;e and o; are a vector of uncertain parameters
and its i-th element, respectively; and the superposed bar denotes the mean.

The first order expansion The frequency transfer function is expanded about the

probabilistic parameter o, via Taylor series using the perturbation method as
follows ;

H(w;a)=H(o;a=0)+ Zaﬂga);a)
a.

a, (1)
i=1 a=0

where n is the number of uncertain parameters.

Approximation of the transfer function In the frequency response analysis, the
frequency transfer function of a SDOF system , which is

m
H(@)= — — 2
k= mao?+ 2hki (2)

where m,k,h and i are a mass,a spring coefficient, a damping coefficient and the
imaginary unit, respectively ,is widely used as an interpolation function to the
frequency axis. Generally speaking , the first order perturbation method seems to
lead to noticeable error in the neighborhood of éH (w;a)/dale =9 =0. In the new
method proposed here, the frequency transfer function is approximated by an
interpolation function to each uncertain parameter instead of equation (1).
Regarding the SDOF system transfer function as the fundamental form , the
interpolation function is supposed of the following form
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H(w;a)= ——— »
1+ca.
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(3)

where ¢, ¢, c,' are complex constants. Although the constants is determined by
H(w;a) and H (w;e)/dals = ¢ in equation(1), these are not always cji # 0 because

of characteristic of each parameter.

Statistical values of the dynamic response The dynamic response and its statistical
values to every uncertain parameter are computed as follows;

g,@;t) =J F@ H(o;a,)e dt (4)
mi(ai;t)=[~m gi(ai;t)fA(ai)dai (5)

of(ai;z)=f {g, (@) =m OF f,; () da (6)

where g (a;t), m( a;;t), and crzi( a;;t) represent the response , its mean and its
standard division , respectively ; F (w) is the input wave spectrum ; and f,;(q;) is
the density function of the uncertain parameter. And for the calculations of the

above integrations, HGQ 5) is employed.

As for the statistical values to all uncertain parameters and the whole
system , convenient procedures, which should be verified by MCS, are assumed as

follows ;
1 n
m(t)=—2m.(a.;t) (7)
ni:l 1 2
a%t):(n-l)}j“_ia (a;t)o,(a,;8)6 (8)
£ 014 08000y
i J

where m (t) and o% (t) are the overall mean and the overall variance ,
respectively ; 8, is the Kronecker delta ; and [ is the number of densities and
elasticities which are varied simultaneously. In order to apply the present method
to various, practical problems widely , the effect of correlation is approximated in a
convenient way by the following equation ;
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NUMERICAL EXAMPLES

Some numerical examples are calculated by the proposed method , MCS and
the second MCS in order to verify this method and evaluate its applicability. The
second MCS in this paper is MCS relaxed restrictions on the generation of
probabilistic parameters such as the parameters are generated only on each
parameter’s axis. Although the ensemble input should be employed in a statistical
sense , the experienced motion , that is the El-Centro accelerogram , is done
because of ease in understanding the phenomena in a practical sense.

A single degree of freedom spring—mass system Applicability of the interpolation

function method , the new method presented here,is evaluated by means of a
SDOF spring—mass system. A random spring constant and mass are normally
distributed with a coefficient of variation equal to 0.2 and probabilistically
independent. In Fig.l the standard deviations obtained by the abaqve three
methods are shown. In spite of large coefficients of variations , very close
agreement among values simulated by these methods is obtained.

A two degree of freedom spring —mass system In order to verify the assumed

formulation about the overall mean and variance, the standard deviation responses
of a 2DOF spring—mass system under the condition similar to a SDOF
spring —mass system are computed by the three methods and shown in Fig.2. The
result by this method and that by the second MCS agree very well. It is because
the distributions of random variables which are assumed in the proposed method
are almost equal to those in the second MCS. Compared with the result simulated
by MCS, however, the result by the proposed method has an error in some degree.
The reason is considered that the error is caused due to the difference of
distributions of random variables in the two methods, that is, random variables in
the proposed method and the second MCS are assumed to be distributed only on
each variable’s axis but those in MCS are assumed to be distributed on the whole
variables’ planes.

A single —element model Consider a single—element model in order to estimate

the applicability of an interpolation function method to FEM. Fig.3 through Fig.5
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show standard deviation responses where random values , which have the
coefficient of variation equal to 0.2, are an elasticity ,a density and a damping
coefficient , respectively. From these figures, it is clear that the interpolation
function method proposed here can be applied to FEM.

A practical model The present method is applied to the 20 - layer model which is
shown in Fig.6. The model consists of 5 materials. The random values of these
materials are probabilisticaly independent each other and are normally distributed
with a coefficient of variation equal to 0.2. Standard deviation responses at mid-
surface point simulated by the proposed method and MCS are shown in Fig.7.
Although the number of samples in MCS is no more than 100, close agreement
between the two methods is obtained.

CONCLUSIONS

An interpolation function method for the stochastic dynamic response
analysis has been developed. And it has been founded that this method and MCS
agree very well even if the analyzed model has an uncertain parameter of which
coefficient of variation is large and even if elasticities and/or densities are
regarded as random variables. For further discussion the reader should refer to

reference 6) .

REFERENCES

1) Bellman,R.E. : Perturbation Techniques in Mathematics, Physics and Engineering,
Holt, New York, 1964.

2) Hisada,T and Nakagiri,S. : Stochastic Finite Element Method Developed for
Structural Safety and Reliability, Proc. 3rd ICOSSAR, June, 1981, p.395.

3) Hisada,T and Nakagiri,S. : Role of the Stochastic Finite Element Method in
Structural Safety and Reliability, Proc. 4th JICOSSAR, May, 1985, I-385.

4) Tanaka,Y. Ukon,H. and Matsumoto,T. : Frequency Response Analysis by Stochastic
Finite Element Method, Proc. of the 42nd Annual Conference of the Japan Society of
Civil Engineers, I-269, 1987. (in Japanese )

5) Liu,W.K.,Belytschko,T.and Mani,A. : Probabilistic Finite Elements for Nonlinear
Structural Dynamics, Computer Methods in Applied Mechanics and Engineering
56, 1986 pp.61-81. _

6) Ukon,H.,Yoshikiyo,T.,Okimi,Y.and Matsumoto,T. :An Interpolation Function
Method for Stochastic FEM Analysis Under Dynamic Loads Using Frequency
Response Analysis, Proc. of JSCE , N0O.392,1-9, April, 1988,pp.167-171.

V-299



g

-
@

ZO—m>—<mO DR>DZ>9G
8 3

o

8

s
2

o
3

Z5=u>=<H0 OR>0Z>H0
o
8 B

2O—u>—<nOg DR>OZ>-C

ZO=u>~<mU TE>TZ>H%
2
El

&

5

3
8

ZOm>m<MT OR>OZ>HG
©
o 3

01 2 3 4 56 7 8 91010 12131415
TIME (se)

Fig.1 o-response by each method.
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Fig.3 a) o-response by MCS (r.v.: E).
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Fig.4 a) o-response by MCS (r.v.: p).
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Fig.5 a) o-response by MCS (r.uv. : h).
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Fig.2 o-response by each method.
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Fig.3 b) o-response by the present method (r.v.:E).
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Fig.4 b) o-response by the present method (r.v.:p).
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Fig.5 b) o-response by the present method (r.v.: k).
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Fig.7 a) o-response by MCS.
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Fig.7 b) o-response by the present method.



