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SUMMARY

This paper is an initial report on a study to develop a methodology for treating uncer-
tainties in the dynamic models of a structural system. The uncertainties are quantified using
probability interpreted as a measure of plausibility of a hypothesis given specified information.
Three approaches for calculating the statistical moments of the uncertain response induced
by the uncertainties in the model are examined for a simple case of a linear oscillator. It is
concluded that a numerical integration approach has the best potential of the three methods.

INTRODUCTION

Motivation Modeling the dynamic behavior of structures requires estimating the model
parameters 0, such as the structural periods and dampings in a modal approach, or the stiff-
ness and mass distributions. Different methods are employed in estimating 6, from empirical
code-type formulas to very detailed, finite element methods. Even the most elaborate and
detailed methods, though, lead to parameter values which have associated uncertainties be-
cause of the numerous assumptions made when modeling the geometry, material properties,
constitutive laws, and boundary conditions of the structural members. In addition, there is
an uncertain model error in the calculated response since any mathematical model gives only
an approximate description of the real dynamics. This study has three goals:

Goal 1: To provide the engineer doing seismic design with a tool to go beyond checking
the nominal dynamic response to specified excitations for a preliminary design; the engineer
will be able to examine the associated uncertainty in the response due to the fact that the
completed structure will not have precisely the model parameter values that were assumed,
and also due to the fact that no model gives an exact description of a structure’s dynamics.

Goal 2: To provide a rational method for utilizing test data from a structure to improve
response predictions. This activity falls within the realm of system identification (Ref. 1).
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Goal 3: To provide a framework to enable model uncertainties, in addition to excitation
uncertainties, to be incorporated into a seismic risk methodology. Note that classical ran-
dom vibration theory focuses on the uncertainty in the response resulting from a prescribed
uncertainty in the excitation, but the structural dynamics are assumed to be described exactly.

Quantification of Uncertainties Using Probability = We employ probability to quantify the
uncertainties involved but use a “Bayesian” interpretation, that is, we treat probability as a
multi-valued logic for plausible reasoning. Specifically, the probability of a given b, P(a|b),
denotes a measure of the plausibility of the proposition a given the information stated in
proposition b. From this standpoint, all probabilities are conditional, since the plausibility
of a proposition depends on the relevant information available. We remark that for most of
the applications we are interested in, the common interpretation of probability as a relative
frequency of occurrences in the long run does not make sense. Also, the calculus of prob-
ability logic is defined by the axioms of mathematical logic together with three additional
axioms (Ref. 2), but this leads to essentially the same calculus as the Kolmogorov axioms of
“mathematical” probability defined as a measure on a o-algebra of sets. Refs. 3 and 4 give
further background relating to probability logic.

Let p(|2) be the joint pdf (probability density function) describing the uncertainty in
the model parameters §. Symbol 7 is used here to denote the information used either to assign
or to compute this probability function. Let p(yk(t)li) be the pdf describing the uncertainty
in the structural response at time ¢ at degree of freedom k. The specific task addressed in this
paper is: given p(4|¢) and the mean and variance of the model error, compute the mean and
variance of yi(2). It is assumed that the excitation is explicitly prescribed in the information
1, although the approach can be generalized to include uncertainties in the excitation as well.
We plan to report at a later date on this generalization and on a method for computing the
full response distribution, p(yx(t)|¢) rather than just its first two moments.

Choices for Parameter pdf

1) Choose p( 4 |7) subjectively based on past experience dealing with similar structures: a
convenient mathematical form is chosen which is roughly consistent with the engineer’s
judgement regarding the relative plausibilities of different values of §. Often knowing one
parameter §; would not influence judgement of plausibilities of the other parameters, so
the parameters are mutually irrelevant to one another. The joint pdf can then be taken
as the product of the separate pdf’s p(6;|¢).

2) Choose p( 4 |¢) by the maximum entropy principle (Ref. 5) which produces the greatest
uncertainty in the parameters consistent with the specified constraints. For example, if
the set of plausible parameter vectors © is a bounded region, then it produces the uniform
distribution if there are no other constraints, and it produces a truncated uncorrelated
multi-dimensional Gaussian distribution if only the means and variances are specified for
each 4;.

3) Choose the “posterior” distribution derived via Bayes Theorem from a subjective “prior”
distribution and test data, if available. This requires using probabilistic system identifi-
cation to process the data.

MOMENTS OF THE UNCERTAIN RESPONSE

Theory The task is to determine the expected value and variance of the structural response
based on a structural model and a description of the uncertainties associated with it. First,
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we express the structural response at degree of freedom & at time ¢ by:
Ye(t) = zk(t[0) + ex(t]4) (1)

where zx(t|§) is the corresponding (linear or nonlinear) model response for the parameter
values 0, and e,(t|8) is the model error for the model with parameter values 9. Second, the
uncertainty in the model parameters is described by the pdf p( 4 |¢) and the uncertainty in the
model error is described by just the first two moments:

E[ex(t[9)] =0 and E[(H8)] = oi(t]d) (2)

where 0 needs to be prescribed. Taking the mean error for a given model described by 8 to
be zero is reasonable if it is judged that any particular positive error is equally plausible as
the corresponding negative error with the same magnitude. It follows that:

Elyc®)|g] = zc(t|g) and E[yi()4] = Z(t18) +ok(t]2) (3)

The desired expected value and variance of the structural response are therefore:
Elunto)] = [ Elue(0lg)o(g19dg
- /e 2(114) p(01)dg = E[z(t)] (4
i.e., expected structural response is the mean model response, and:

Var [yx(8)] = B[yE()] — £ [a(?)]
- [ Blt0)18] p(2148 - B[ (0]

= [ {m(t10) - Blsn(]Y (8lag + [ o2tl8) p(21)ag
5] G]
= Var [z1(t)] + E[02(2)] (5)

i.e., variance of structural response is variance in model response due to uncertain parameters
plus mean variance in the model error. If the variance of the model error is taken to be
constant, then E[0Z(t)] = oZ, which could be chosen based on the experience gained from
applying system identification methods to structures. It remains to evaluate the integrals
for the mean and variance of the model response, which cannot usually be done analytically.
Therefore, the problem reduces to finding an accurate and efficient approximate method.

Methods of Computation
(i) Monte Carlo methods based on sampling using simulations. High accuracy requires large
sample sizes and therefore these methods can become very expensive computationally.

(ii) Second-moment approach (SMA) which involves expanding to second order the model
response z(t|§) in a Taylor series about the expected value § of § (Ref. 6). We show
that for dynamic problems this does not work well.

(iif) Fourier-series approach (FSA) which involves expanding the model response z(t|4) in a
Fourier series w.r.t. f. This new approach works well if the number of parameters is
small, but becomes cumbersome if the parameter space is of high dimension.
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(iv) Numerical integration is straight-forward but computationally costly for high-dimensional
parameter spaces. It turns out that it is advantageous to uniformly discretize the cumu-
lative probability rather than uniformly discretize the range of each parameter. The
method can be extended to high dimensions using cumulative conditional probability
distributions, but we illustrate the idea in this paper with a one-dimensional example.

APPLICATION TO UNCERTAIN LINEAR OSCILLATOR
Introduction Let
i+ 2wt + w?z = f(t); z=z(tlw), z(0w)=0, z(0w)=0 (6)

be the model of an oscillator starting from rest. For illustrative purposes, assume that the
damping ¢ and excitation f(¢) are deterministic (known precisely), but that the natural fre-
quency w is uncertain. Use p(w|s) to describe the plausibility of possible values of w over a
finite range @ = [wy,wz]. The solution of (6) for the model response is

z(tjw) =-/(; ft = 1) h(rlw)dr;  h(rjw) = ;lse““” sinwgr (7)

where wg = wy/1 — ¢2. The problem is to determine E [z(t)] and V,, [z(t)] for a particular
choice of p(w|7). In what follows, we suppress the information ¢ in the notation.

Second-Moment Approach SMA starts with

Oz (t|w)

2
3 1 9%z (t|w)
ow

_ 2  dw?

w=w

(Aw)? (8)

z(tlw) =~ z(t|@) +

where Aw = (w — @) and @ is the mean value of w. This leads to

1 8%z (t|w)
2 Ow?

9z (t|w)

E[z(t)] = =(t|o) + 2, Varlolt)] = (_._aT

w=G

)203 (©)

w=a

Note that these approximations are independent of p(w) except for @ and ¢2 = V,.[w]. The
problem is that the quadratic approximation in (8) can be very poor over {1, since z(t|w) has
an oscillatory type of behavior w.r.t. w. For example, for free vibrations of an undamped
linear oscillator starting with unit displacement, z(¢|w) = coswt. Thus, (9) gives:

E[z(t)] = cosat [1 - %z’-tz] s Var[z(t)] = 02t?sin® ot (10)

This is obviously misleading, since each z(t|w) has a bounded amplitude of unity and so E [.’D(t)]
and V,, [:c(t)] cannot become unbounded with time. In fact, if w is uniformly distributed over
the interval {1, then:

cos wt dw =
wy (wz - wl) \/§awt

/wa 1 _ cos(@t) sin (v3o,t)

Bla(0)] = [ s(th) plo)do = (11)

where @ = -%(wl +wsg) and 02 = -f1§ (w1 —w2)?. We conclude that although SMA allows efficient
computation of the mean and variance of the response, its accuracy is too questionable.

V-304



Fourier Series Approach As an alternative, consider a truncated Fourier series expansion
w.r.t. w over the interval I = [w;,w,], rather than a truncated Taylor series:

N
z(t|w) = zp (t|lw) + ao(t) + Z [@sn(t) sin(nuw) + @cn(t) cos(nuw)] (12)

n=1

where u = 27/ (wg —wy) and zr (t|w) = bo(t) + b1 (t)w is a linear function of w between z; (t) =
z(tjwy) and z2(t) = z(tlws). zr is introduced to reduce the effects of Gibbs’ phenomenon at
the endpoints in the truncated Fourier series. Thus, ao(t) and the a,u(t), acn(t) are actually
the Fourier coefficients of [z(t|w) — z (t|w)] over Q. By evaluating only the first few terms of
the Fourier series, a good approximation for z(t|w) over {1 is achieved. It is possible to derive
analytical expressions for the derivatives of ag(t), a,,(t) and a.,(t) which involve convolutions
of the excitation f(¢) with known functions. The time histories of these Fourier coefficients
can then be evaluated numerically by using an FFT algorithm, allowing the moments to be
computed. For example, if p(w) is chosen to be a uniform distribution over {2 = [w;,ws], then:

Elz(t)] = /ﬂ 2(tw) p(w)dw = 21 (@) + a0 t) (13)

where @ = I(w; +ws). A closed-form expression for Vo, [z(t)] can also be derived for this
case.

Numerical Integration One approach to approximate the integrals [ z*(tjw) p(w)dw (k =
1,2) required for E[z(t)] and V,.[z(t)] is to use Ef_’__l 2" (t|w;) p(wi) Aw where Aw = (wg —
wy)/N and w; = w;y + (£ — 1/2)Aw, 1 = 1,2,..., N, that is, the interval Q = [wy,w,] is subdi-
vided into N equal intervals. It is more efficient, however, to choose the w’s by subdividing the
range of P(w) into N equal subintervals where P(w) = [“  p(w)dw, that is, choose the w;’s
so that the probability of w lying in any subinterval is 1/N. This gives as an approximation:

k 1 en 4
/Q 2#(t0) plu)dr = = Y 2* (e (14)

=1

where P(w;) = (¢ —~1/2)/N, 7 =1,2,...,N. When many time steps are involved, numerical
integration is less efficient than FSA for a single parameter, but it is more readily adapted to
higher-dimensional parameter spaces than FSA. We note also that this numerical integration
approach applies equally well to linear and nonlinear models, since it simply requires a set of
model responses z(t|§ ;) to be computed.

Figure 1 shows the mean and standard deviation time histories computed by the three
methods for a uniformly distributed frequency in the range 3 < w < 4rad/s. [For FSA, N =3
in (12)] The oscillator was subjected to a base acceleration given by the 1940 El Centro NS
record. The FSA method is nearly indistinguishable in these plots from the “exact” moments
computed by numerical integration using a fine discretization. The SMA, on the other hand,
gives a poor approximation. We also used numerical integration to compute the moment
time histories for a truncated Gaussian distribution for w over [3,4], with @ = 3.5 rad/s and
o = 0.25 rad/s. These plots differed from the uniform distribution case by less than about
10%.
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Figure 1 Expected displacement and displacement deviation for 5%-damped uncer-
tain linear oscillator with assigned p(w) uniform over [3,4]. ( — numerical
integration; - -~ - SMA; - - - - FSA).
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