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SUMMARY

This paper applies the extended Kalman filter to estimate the system
parameter values of a nonlinear structure subjected to the ground motion so that
the dynamic characteristics of the structure can be known once the appropriate
observed data are available. The system is a three-stroy shear building with
restoring force exhibiting bilinear hysteresis of kinematic type. The measured
data are generated artificially and the measurement error is assumed to be band-
limited white noise. Numerical results show that the filter is very powerful
in identification problem when the proposed two-stage iteration procedure is
employed.

INTRODUCTION

Engineering structures are often subjected to dynamic forces. Generally,
the main effort in structural dynamics is concerned with defining environmental
loads, establishing analytical structural models, and developing suitable
numerical schemes for calculating the corresponding response. The usefulness
of such analytical solutions is, however, limited by the degree of realistic
representation of the formulated mathematical models. Obviously, a logical
prelude to the prediction of the dynamic response of system is the determination
of its dynamic properties. On the other hand, to evaluate the safety or re-
liability of structures following a natural hazard, e.g. a strong earthquake,
engineers also need to know the current state of structural characteristics.
Such is the system identification problem.

In fact, with the recent interest in the aseismic design of structures, more
structures are instrumented with strong motion accelerographs so that the struc-
tural properties can be determined from records obtained from major earthquakes.
Many structures have been instrumented with two accelerographs, one is placed
in the basement of the structure while the other is placed at some floor level.
It is clear that a reliable identification technique is needed to take advantage
of such recorded information.

The study intends to examine the feasibility of an identification scheme
by which system parameter values can be estimated. Since the structural be-
havior usually becomes nonlinear under the threat of severe damage and the
measurement error is random in nature, the present study applies the prediction-
filtering theory to perform the parameter identification. Indeed, by regarding
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each of the parameters involved in the system as an augmented state variable,
the extend Kalman filter may sequentially estimate the parameter values [1,2].
The system is a nonlinear three-story shear building. Eighteen state variables
are involved to represent three sets of floor displacement, velocity, damping,
stiffness, post-yielding stiffness, and yielding strength. The system para-
meter is obtained by two-stage identification approach and is compared with its
true value to explore the degree of accuracy offered by such approach.

FILTERING THEORY

A nonlinear continuous system with measurements on discrete time instants
is described by

x = f (x,t) )

z(k) = Hx(k) + r(k) (2)
where x is an n-dimensional state vector for the system, H is the measurement
matrix, z is an m~dimensional measurement vector and r is the measurement error.
Both x(k) and z(k) are assumed to be Gauss-Markov sequences. In addition, the
measurement error process is an m-~dimensional Gaussian white sequence with zero
mean and covariance matrix R(k). This sequence is independent of the initial

state x(0) since physically we expect the mechanism from which the measurement
errors arise to be independent of the ome leading to the initial state.

Through proper linearization of Eq.l along the reference state x*, we have
the computational cycle which proceeds as follows:

(a) Compute the predicted state and its error covariance matrix
Pk+1] %

t
x(ktl|k) = & (kK + ftk+1 £&(e]t), e)ae (3)
k

(b)Compute the Kalman gain matrix K(k+l) which depends on P(k+1lk),
H(k+1l) and R(k+l).

(c)Compute the filtered state and its error covariance matrix P(k+l|k+1)
with the aid of measurement z(k+1)

x(k+1|k+1) = x(k+1|k) + K(k+1) [z(k+l) - H(k+1)x(k+1|k)] (4)

(d)Increase k to k+l and return to step (a).

STRUCTURAL MODEL
The system equation of a three-story shear building with the restoring force
exhibiting bilinear hysteresis of kinematic type is [3]
x = f(x,t)
- .
X5

Xg

. 1
Xg + ml'(-qu7 - xuXg + xXgxg - Xjoh; (x1) + x11hy (xp-x71))

” 1
=7/ ~Xg +—(xyXg ~ Xs5¥g ~ X5Xg + XgXg — X110 (X2=%)) + X12h3(x3-x2))
m
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. l
“Xg + —— (X5Xg - X6Xg ~ X12h3(x3-%2)) (5)
m3

o-----0O

with state vector

T : .
x =[xy, Xyeeens Xgl = [Vi, Vis cys ks by oal] i=1,2,3  (6)

where Vi=displacement at the i~-th floor, ci=damping coefficient, ki=unyielding
stiffness, ai=stiffness ratio, bi=ratio of yielding strength to ki’ m, =mass,

hi(°)=restoring force, and §g=ground acceleration,

The measurement is a six~dimensional vector consisting of displacement and
velocity time histories. It is generated by adding a Gaussian white nosie to
the structural response which is computed on the basis of the assumed par-
ameter value and the simulated ground acceleration ﬁg. The intensity of noise

is taken to be 67 of the response in terms of RMS values. The upper frequency

is 25 Hz. By pretending that the parameter are unknown and performing the pre-
vious filtering theory based on such artificial measurement as well as simulat-
ed input, we may compare the identified parameter values with the true values
which are actually the above assumed ones. This makes it possible to justify the
convergence and accuracy offered by this identification technique.

NUMERICAL EXAMPLES
If excitation is small, based on the corresponding linear system equation of
Eq. 5 and the global iteration technique [2], we obtain the system parameters

which are shown in Table 1. To compare the accuracy, the error index is defined
by averaging the normalized error for each measurement component, e.

N ;X )
e=1[ I (z2(k) - =KD/ I 22(W)] @)
k=1 k=1

where N is number of measurement sequence. The result is good and the error index
being 4.27 reflects the effect of noise.

Table 1. Identified paremters of linear system based on global iteration

Parameters c1 c2 c3 k1 k2 k3 error
Iteration No. index
0 5.00 5.00 5.00 50.0 50.0 50.0
1 2.36 0.70 1.44 110.9 105.4 91.0 0.054
2 1.74 0.97 1.55 120.7 96.8 85.9 0.043
3 1.48 1.18 1.45 121.5 96.9 83.4 0.042
4 1.49 1.23 1.29 120.3 99.2 80.8 0.042
5 1.50 1.23 1.29 120.2 99.3 80.7 0.042
6 1.50 1.23 1.29 120.2 99.3 80.7 0.042
True velue 1.50 1.20 1.20 120.0 100.0 80.0
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The system behaves nonlinearly when intensity of input excitation increases.
If the previous identified values are employed to perform the identification pro-
cedure for linear system, we expect the divergence of parameter values. Figs. 1,
2, and 3 show time histories of k,, c;, and V), respectively. In Figs. 1 and 2
parameter values change abruptly &round t=0.4 sec. The interpretation that the
system becomes nonlinear at this time allows us to estimate the yielding dis-
placement being close to 1 cm. This information is important since the identified
parameter values are particularly sensitive to the initial estimate of yielding
strength.

To identify the nonlinear system, we propose a two-stage iteration procedure.
First, the filtering technique is carried out on an equivalent linear system as
mentioned above in order that certain parameters can be estimated with confidence.
Followed is the performance of filtering technique on original hysteretic system
based on those estimated parameter values. The outcome is summarized in Table 2.
Except the stiffness ratio, all initial parameter values are same in eight trials.

Table 2. Identified parameters of nonlinear system

Hnitial Ccy Co C3 kl k2 ka bl b2 b3 ay ap, ag error
alue of a; index
0.1 1.75 1.30 1.35 117.5 98.9 81.8 .56 .69 .66 .32 .20 .18 | .094
0.2 1.67 1.20 1.31 118.1 99.2 8l.1 .59 .66°.63 .31 .24 .23 .072
0.3 1.62 1.31 1.29 119.3 98.9 80.7 .60 .63 .61 .30 .28 .27 | .064
0.4 1.56 1.36 1.33 119.8 98.7 80.5 .60 .61 .58 .29 .29 .29 | .062
0.5 1.56 1.38 1.34 120.2 98.6 80.5 .61 .60 .54 .28 .31 .33 | .064
0.6 1.50 1.34 1.39 120.0 98.9 80.3 .60 .58 .50 .29 .32 .37 | .066
0.7 1.44 1.32 1.39 120.1 99.0 79.8 .58 .55 .43 .30 .33 .42 .075
0.8 1.42 1.36 1.35 120.0 98.4 81.3 .63 .52 .43 .27 .36 .38 | .088

true value 1.50 1.20 1.20 120.0 100 80.0 .60 .60 .60 .30 .30 .30

The parameter values from the iteration with a minimum error index are re-
garded as the final identified values. It is interesting to note that the index
is close to the noise intensity. This implies that the sequential identification
scheme is able to filter the measurement noise and yield a more accurate par-
ameter value.

CONCLUSIONS

Numerical results show that the extended Kalman filter is very powerful in
identification problems of a linear and nonlinear MDOF system when the proposed
two-stage iteration procedure is employed. Further investigation in identifica-
tion of a tall building with recorded data from installed seismographs is en-
couraged.
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Fig.l Identified stiffness based on linear state
equation
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