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SUMMARY

The Dynamic Correction method is here extended to the stochastic seismic
analysis of a multistorey building. Earthquake ground motion is modelled as a
stationary zero mean Gaussian filtered process. The accuracy in the evaluation
of the maximum peak of the nodal response is investigated by varying some struc-
tural parameters.

INTRODUCTION

It is well known that seismic ground motion can be adequately represented as
a stochastic process and the response of structural systems can be evaluated in a
probabilistic sense. In the framework of modal analysis, when the degrees of
freedom of the systems are numerous, usually only the first few modes are taken
into account. The truncation of modes (Mode Displacement method) drastically
reduces the computational effort and accurate results are obtained when the fre-
quency content of dynamical loadings is at a low frequency. Unfortunately, modal
truncation is usually made a-priori and no information on the contribution of
higher modes to the response can be established. For this reason, in determini-
stic analysis many correction procedures have been proposed (Refs. 1 to 3) in order
to improve the nodal solution. The latter consist in adding to the nodal solution,
obtained using a reduced number of modes, a pseudo-static response which takes the
remaining ones into account., Limited research has been carried out in stochastic
analysis (Ref. 4).

The aim of this paper is to investigate computation problems and the accuracy
of the seismic response of asymmetric multistorey buildings subjected to earth-
quake ground motion, using the Dynamic Correction method (Ref. 3) here extended
to stochastic analysis. Seismic ground motion is modelled as a zero mean station-
ary Gaussian process having a Tajimi (Ref. 5) power spectral density function.

It is to be emphasized that the correction procedure for stochastic seismic analy-
sis gives greater accuracy with respect to the Mode Displacement method without a
noticeable increment in computing time.
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EQUATION OF MOTION

The equation of motion of an n-storey building subjected to an earthquake
may be cast in a linear form as follows:

Mg + Cx + Kx = -M1g(t) (1)

where Z(t) is the ground acceleration; M, C, K are the inertia, damping and stif-
fness matrices, respectively, all of order NxN (N= 3a); x is the vector of floor
displacements relative to the ground and the dot indicates differentiation with

respect to time t. The vector 1 takes into account the bullding orientatioen with

~

respect to the input direction.

By means of the usual co-ordinate transformation x= ¢q, @ being the sodal
matrix normalized with respect to M (21 ig itg i-th column) equation (1) may be
transformed into modal co-ordinates in the following form:

G+ 0g+0°q=nuc(t) ()

where y = ~¢TM 1 (the superscript T means transpose). In equation (2}, @i is a
diagonal matrix listing the natural frequencies wy, 4= grgg ig the modal damping
matrix here assumed to be a diagonal one.

For the evaluation of the modal rasponse a 2N dimension state vector approsch
is commonly used. For this purpese equation (2) can be written in reduced {orm
as follows:

Ay = -By + ve(o) ()
where y(t) = [qT(t) qT(t)]T is the vector of 2N modal state variables and

A I a* 9 )
A= ol? ngwI; Vo= 0 {&)

in which @ is the zero matrix sand I is the identity matrix. The vector of nedsl
variables can be obtained by using the modal superposition g =Py where the matrix
P and the vector gz(t) are given as:

¢ 0 x(t)
E-Q MR R #(t) (8}

When the degrees of-freedom of the given systems are numercus, only the lower
frequencies and the corresponding m lower modes are usually computed. It follows
that the matrix ¢ is truncated after the m~th column. Conseguently, the matrix
P is of order (2Nx2m). Hereafter, all truncated matrices and vectors will be
denoted by means of a superimposed symbol "°". The approximated nodal response
z2(t) can be obtained by various mode superposition methods (Refs. 1 to 1),

4

The Dynamic Correction (DC) method (Ref. 3) iz adopted because sll other
approximate methods can be obtained as particularizations of the DC method. Ace
cording to the DC method the approximate response can be written in the form:

z2(t) = Bg(e) + 4,7,0(t) + Qxlx&(t) (6)

where

kot - g4 gt (kTP CKTr - 90T A 8T
4, = 3 b, = (1)
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and 1, = -MT.

It is worth noting that the response in terms of displacement (first N rows
of the vector z2(t)), under the assumption of {(t) negligeable, coincides with
the analogous rows evaluated by means of the Mode Acceleration (MA) method (Ref. 1).

However, it will be emphasized that the nodal response in terms of velocity
(last N rows of the vector z3(t)) in the simpler case of forcing vector constant
(Z(t) = 0) also differs from the analogous rows evaluated by the MA method. In-
deed, applying equation (6) particularized for C(t) =0, the last N rows of the
vector z&(t) remain unchanged, while, using the MA method and then differentia-
ting the vector x2(t), the derivative ((t) appears and this implies serious pro-
blems in stochastic analysis, as will be shown further on.

SEISMIC STOCHASTIC ANALYSIS

When earthquake ground motion {(t) is modelled as a zero mean Gaussian pro-
cess, the vector z(t), which is the solution of the linear system, is fully de-
scribed in a probabilistic sense by the covariance matrix Zyaza(t) =E[22(t) zaT(t)],
where E[:] means stochastic average. This matrix evaluated for z2(t) can be
obtained by multiplying equation (6) particularized for (t) =0 by its transpose
and making expectation we obtain:

Zpaga(t) = P Ly (6) BT+ E(c2(e) 18, 1,10 4T + BEye(t) ol +
8,1, Sy (6) BT (8)

In order to evaluate the matrix J,aza(t) by means of Eq. (8) the modal co-
variance matrix Eyy(t), the variance of input E[{?(t)] and the input-output cross-
covariance matrix Lyr(t) must be determined.

In cases in which the earthquake is modelled as a stationary process, the
statistical characteristics are independent of time. Therefore, in these cases,
the quantities that appear in Eq. (8) can be easily evaluated in the frequency
domain. In particular, the matrix iyy is given as:

By = [ B(w) yuT B¥T(w) Sy (w) do (o)

where, the asterix means complex conjugate, Syx(w) is the power spectral density
of the input ¢(t), and ﬁ(w) is the usual transfer function matrix (order 2mxm)
(aT(w) = (f(w) iwh(w)], h(w) being the diagonal transfer function matrix in
modal co-ordinates).

The variance of input E[{?(t)] and the vector listing the input-output cross-
covariances can be written respectively as in the form:

(e ()] = [ See(@)dus  Eyp = [ Blw)uSgp(w) du (10)

Notice that the covariance matrix of the displacement Iyaya is the same using
either the MA or the DC method. The displacement-velocity cross-covariance matrix
Lxaya and the covariance matrix of velocity Ixaxa computed using MA method give
serious problems due to the fact that in the corrective terms_there appear the
cross-covariance between C(t) and £(t) and the covariance of {(t), which in most
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cases are divergent quantities. Using the DC method. this drawback is overcome

and the derivative C(t) does not appear in the velocity vector xA(t).

NUMERICAL EXAMPLE

In this section the method proposed is applied to a shear type ten-storey
building, whose layout is shown in Fig. 1, in which the frames have been numbered.
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Fig. 1 Layout of the multistorey building

The cross-section of all columns have been assumed to be 30 =60 cm; the mass
of each floor is 18000 kg and the Young's modulus of the material is £ = 30000 MPa.
The earthquake ground motion is idealized as a unidirectional input in the direc-
tion x; its PSD is a Tajimi (Ref. 5) one given as

(wé-’-l»Céwéwz)So

(wg - w?)?4 &nggw’

where S, is a constant here assumed to be one. The values wg and {g are given as:
wg = 57s”! and Cg=0.6. The mean value of the largest peaks of the displacements
u with respect to the ground are evaluated by means of Davenport's formula (Ref.6).
The analysis has been carried out varying the position Gy of the centroid of the
mass in relation to the geometrical centroid G of the generic storey. In Fig. 2
the displacements u of frame no. ! are depicted. These quantities have been eva-
luated using both the Mode-Displacement (MD) method and the DC method. To compa-
re the results in the same figure the exact response, i.e. evaluated using all

the natural modes, has been depicted. Comparing these figures some considerations
emerge: using only the first natural mode in all cases the response evaluated by
means of the MD method is very different from the exact one. The correction
obtained using the DC method does not lead to acceptable results. Using two modes,
in the case of e =0 the DC method does not give a noticeable improvement while

for e =50 cm,two modes without correction give a very different result from the
exact solution and the correction has more influence. For e = 100 cm, two mode
give almost zero displacement using the MD method and the correction improves the
solution though the corrected results underestimate the actual displacements. In
order to establish a criterion for selecting the number of modes and to understand
a-priori when the correction has an influence, it is necessary to evaluate the
ratio between the mean energy corresponding to the approximate response computed

with the MD method and the mean energy associated with the response evaluated by
means of the DC method, i.e.

V-40



E[(t, c(tNT(§3(t))]
r 3

(12)
B[(t, ¢t )T x3(1)]

This ratio lies between zero and one. In particular, the ratio becomes one
when the correction term is zero, i.e., when all modes have been computed. The
ratio is zero when the response is evaluated in a pseudostatic term only. It
follows that the lower r is the more influence the correction term will have.
Those observations one confirmed in Table I, in which for the numerical example
the coefficients r are appended.
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Fig. 2 Mean value of the largest absolute
displacements of frame 1.
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@ 19 mode 27 mode
(em)

0 0 0.97231

50 0 0. 58648

100 0 0. 70050

TABLE I. Values of the energy ratio r for
the structural system sxaminsd.

CONCLUS TONS

In this paper an extension of the Dynamic Correction method to the stochastic
analysis has been proposed. The procedure sffords an accurats evaluation of
structural response in terms of covariances of displacements and velocities using
a reduced number of mode shapes. The numerical application shows tThat for all
cases considered the method gives a batter evaluation of the veaponas. Az the
seismic event, here schematized as a zero mean Gauvsslasn process filtered by @
Tajimi filter (Ref. 5), involves s rather wide freguency range, the improvessnt
due to the correction proved to be minlmum in some capes., The procedurs sdopled
makes it possible to estimate a prieri the efficiency of the sodal corrsction
through the evaluation of a coefficient given by the ratic between the sverage
value of the energy associated with the uncorrected response and fhat snsorlaled
with the corrected response.
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