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SUMMARY

Critical excitation of a single-degree-of-freedom system is discussed, which
has a nonlinearity of quadratic as well as cubic terms of dependent variable.
First, critical intensities of three type excitation are obtained by numerical
calculation and their dependent property on system parameters is clarified.

Then, possibility of analytic prediction of critical excitation is examined,
referring to numerical results. A few trials of prediction are executed for
sinusoidal excitation and several properties of respondent behaviour at stability
limit are made clear, but this paper can not succeed yet to find the decisive
method from a theoretical point of a view.

INTRODUCTION

Design criteria of space structures, vessels and some building structures
subject to earthquakes depend often on whether respondent behaviours are hurtful
for their functional safety or not, rather than on wultimate material strength of
them. One of the most important respondent behaviours of the structures is
concerned with dynamic instability as a whole of the structure.

Dynamic instability phenomena of the system with nonlinear restoring charac-
ter have been investigated as Chaos problem in recent decade in the world(Ref.1).
Respondent behaviours, i.e. chaotic behaviours, manifest themselves through many
numerical examinations. However, the effective method of prediction of incipient
instability has not been obtained except some special cases(Ref.2). Whereas
chaotic behaviours are discussed in infinite time region, dynamic instability of
the structures under earthquake loading becomes significant in finite time,
especially in short time, region . That is, the instability in transient region
is important and for which influence of initial conditions seems not to be
negligible. Though the stability critical intensity of step or impulsive loading
can be easily determined(Ref.3), it is quite difficult to determine it in case of
time dependent excitation because of system being nonconservative. Even for
sinusoidal excitation there is no effective method of prediction of this critical
amplitude except such a method as to observe the respondent behaviour calculated
numerically in time history. This paper deals with some investigations regarding
the prediction of incipient instability.

GOVERNING EQUATION

The responses of flexible structures under earthquake loading are significant
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usually in fundamental mode or modes of sufficiently low degree. This implies
that it is pertinent to introduce the assumption of flexural vibration. Intro-
ducing the mode superposition method, the final governing equation of the
structure is deduced in the following form.

N
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or compactly .
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Where Q(t) and P(t) are longitudinal and lateral excitation, respectively.
Coefficients 6o v 875 are usually calculated easily as shown, for instance, in
Ref.3 for spatial frames subject to combined vertical and horizontal earthquakes,
in Ref./ for spherical domes subject to vertical earthquakes.

Only primitive knowledge about nonlinear dynamics leads to the speculation
that dynamic instability should be examined in multi-modal state in continuum
mechanics. In this context, Ref.4 has shown that stability critical intensity of
excitation in multi-modal state is less than that in single modal state, in spite
of numerical results of limiting number of cases considered.

The state of Q = 0 will be more practical in flexible structures and for
this state the most comprehensive procedure to predict dynamic instability will
be formulated as follows. If P is a periodic function with period R, following
relations seem to hold.

T(R) = T(0) = To, TR) = *c0) = T, ceees (3)

Substituting another solution T + Y into eq.(2) and linearizing the equation with
respect to ¥, we get

MY +C(T) Y +K(T)Y=0 ceese (4)
If a mapping matrix A which satisfies the following equation is obtained,
A [Y(0), Y(0)Jt = [¥(R), ¥(R)]t
we can set a stability measure p(4) as
p(A) = max |Aj| \i: eigen value of A

Stability of the origin Y(t) = 0, that is, stability of T(t) is examined from the
character of this measure. However, since coefficient term of Y can not be
usually expressed in mathematically analytic form, eigen values of A are not
calculated in analytic sense. And, moreover, satisfaction of eq.(3) has not been
confirmed. Thence, this procedure is of no use for the problem discussed
herein.

Though the importance to take account of the condition of coexistence of a
few modes is evident, there is no practically effective method to determine
critical excitation except the method in which critical excitation is discrimi-
nated by the observation of appearance of sudden increase of some absolute
response measure calculated numerically in time history region.

DYNAMIC INSTABILITY IN SINGLE MODE

In order to examine the properties of dynamic instability single modal state
represented in the following expression will be discussed in this paper.
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1. Numerical Results of Critical Excitation For Dynamic Instability

Intensity of critical excitation was determined by direct observation of
respondent behaviour of x(t) calculated numerically in time historical region.

Stability limit intensity of excitation depends on the time t = tj at which
sudden increase of response initiates. Fluctuation of stability limit due to the
variance of tj, however, is very small in transient region.
CASE 1: F(t) = fysin t. Stability critical amplitude f., is defined as f, for
which x(t) depicts such a path as shown in Fig.1. Some numerical results are
given in Table 1 with following initial conditions

Xo = 0.002, %5 = 0 and x5 = 0, %o = £,/(1-n?) (if n =1, x5 = - £,/2)

Influence of initial conditions and damping on for is given in Table 2 and Table

3, respectively. Table 1 fop of sinusoidal excitation

X =0. 002, %020. xe = 0.. %o = fo /(L. -72)
aN\E| 0.10 [ -0.10 [ -0.30 | -0.50 0.10 [ -0.10 [ -0.30 | -0.50
1.0 | -0. 07204 | -0. 06424 | -0. 05884 | -0. 05484 | -0. 09088 | -0. 08168 | -0. 07528 | -0. 07008
n=1.0 ¢=0. a=1.0 7= | 0.5 ~0. 11364 | -0. 09124 | -0. 07884 -0. 14496 | -0. 116986 | -0. 10096
p=.2 f,,=-.0682 i 0.8 0.3 ~0. 15504 | ~0. 11044 | -0. 09064 -0. 19952 | -0. 14192 | -0. 11632
0.1 -0.21228 | -0. 12804 | -0. 10004 -0. 27312 | -0. 16432 | -0. 12752
AP AR AP AAAA —— 1.0 -0.0535 | -0.0460 | -0.0400 | -0.0345 | -0. 06056 | -0. 04135 | -0. 04168 | 0. 03440
7= | 0.5 -0.0760 | -0.0571 | -0.0493 -0. 08048 | -0. 07008 | -0. 05008
10| 0.3 -0.1014 | -0.0700 | -0.0590 -0. 09776 | -0. 07856 | -0. 05936
1=1.2 ¢=.05 a=1.0 0.1 -0.1574 | -0.1090 | -0.0902 -0. 15936 | -0. 11456 | -0. 09216
g=1 f, =-.02255 1.0 [ -0. 15004 | -0. 11324 | ~0. 10184 | -0. 10004 | -0. 20264 | -0. 18224 | -0. 16784 | -0. 15584
e = | 05 -0. 19624 | -0. 15904 | -0. 13884 -0. 32272 | -0. 26512 | -0. 23312
; ; 514 1.2] 0.3 -0.26088 | -0. 19748 | -0.19524 -0. 44832 | -0. 33632 | -0. 28352
Fig.1 Exax-nples.of 1nst{1bll}ty 0.1 -0.39548 | -0. 31548 | -0. 25748 -0. 68616 | -0. 43792 | -0. 35032
under sinusoidal excitation (if % = 1.. then %a = - fo / 2. )
s
Table 2 Influence of x5, X5 on for Table 4 (f1 ,f2) at stability limit
7\Xe| . 042 -.002 038 078 118 .158 .198 .238 .278 318 358
0.8 | - 1136 - 1136 - 1128 - I111 -. 1085 -. 1051 -. 1009 -. 0959 -. 0302 -. 0838 -. 0768 7 (a8 PAIRC f1, f2 ) OF CRITICAL VALUE
1.0 | -.0753 - 0751 -.0812 . 0816 -.0756 -. 0733 -. 0753 -. 0762 -. 0810 -. 0817 -. 0721 L2l 1Lol-0.1] fr [1L00 - 0800 - 0700 -.0500 -. 0300
1.2 | -.1028 - 1950 -.1990 -. 2023 -. 2055 -. 2051 -. 1984 -. 1913 -. 1838 -. 1762 -. 1681 fo |~ 0LL0 - 0776 - 1083 -. 1385 -. 1696
%o =0 a =050 B =-0100 05| f1 | 0950 - 0850 - 0750 - 0650 -. 0550
f2 | .0050 -. 0467 -. 0885 -. 0885 -. 1014
7\%e| -. 042 -.002 .038 .078 .118 .158 .198 .238 .278 .318 .358 i <0450 -. 0350 -. 0250 -. 0150 -. 0050
0.8 | - 1181 -. 1138 -. 1094 -. 1048 -. 1001 -.0953 -. 0905 -.0855 -. 0805 -. 0755 -. 0704 LOf L0014 | 0013 - 0302 -. 0307 -. 0857 -. 0959
1.0 | -.0697 -.0750 - 0801 .0812 -.0822 -.0831 -. 0838 -.0953 -. 0961 -. 0968 -.0976 1 T= 0300 = 0200 = 0100 = 0000
1.2 |- 1866 -. 1956 -.2045 -. 2130 -.2216 -.2299 -. 2379 -.2907 -. 3008 -. 3098 -. 3311 -0.5 fo |~ 0215 -. 0317 -. 0512 -. 0962
x =0 a x0.500 B = -0.100 i | ~ 0800 - 0500 -. 0400 -. 0300 -. 0200
a = 0.500 B = - 0.100 0-8) LOJ-0-11 ¢ |- 0084 - 0039 - 0024 -. 0214 -.0326
Table 3 Influence >G 0 .02 .04 .06 .08 .10 ~0-§ ? ?333J3£3?3ﬁ35333J3£§
0.8 |- 1136 - 1217 -.1298 -. 1377 -. 1455 -. 1532 ~ - fz " '1 ot - ” 0. ooé % =0
of damping on fgy  [1.0 |- 0760 - 1050 -. 1435 -. 1570 -. 1750 - 1903 KT = #) sin t + £z sin 1. @ = 000 "
1.2 |- 1962 -.2676 -. 2830 -.299] -. 3185 -. 3353

CASE 2: F(t) = fysint + fpsinl.2t The pair (fj,fy) of stability limit is
tabulated in Table 4. Despite that the result of f, being considerably small for
n = 0.8 and of f, increasing rapidly with decreased f; for n > 1.0 can be
foreseen, Table 4 clarifies the tendency of its variation.

CASE 3: F(t) = random excitation Setting as wy = 3.0 and w3 = 1.0 and
Table 5 Sp, Fp for specific random excitation
« B = -0.1 B _=-03 B _=-0.5
7 fer | ¥'Sp Fm fer | VSp Fa fer Y Sp Fo
n=1.2, ¢=0, a=l., p=-.1 1.0 |- 1132].11122 . 4205 | -.1018|.10469 | .3958 | -. 1000 | . 09920 | . 3751
e . . : 1.2 | 0.5 [-1962).20293 |.7672 | -.1590 |.17349 | .6560 | -.1388 |.15605 | . 5899
0.1 |-.3955|.55692 | 2.105 | -.31855|.36271 | 1.371 | -. 2575 |.29044 | 1. 088
EXCITING FORCE 1.0 | - 0460 | . 10653 |.4028 | -.0400 |.10159 |.3841 | -.0345 |.08711 |.3671
1.0 | 0.5 |-0760|.19855 |.7544 [-.0572 |.16622 |.6284 | -. 0493 |.14625 |.5530
0.1 |-.1574|.42535 | 1.608 | -.1090 |.28622 | 1.082 | -. 0902 | .22812 | . 8624
1.0 | - 0642 | .03536 | . 1338 | - 0588 | .03225 | . 1219 | -. 0548 | .03536 | . 1337
0.8 | 0.5 |-1136(.04483 .1696 | -.0912 |.05020 | .1897 | -.0786 |.04416 | . 1669
0.1 |-.2123].12336 |.4664 | -.1280 |.07382 | .2192 | -. 1000 | .05840 | . 2208

Fig.2 Examples of instability o = 0.002. %o = 0., C = 0. Random wave: @,<3.. w(=l.. divided into 10 intervals
under random excitation




assuming that power
spectrum density between
wy and w, is constant,
random excitation was
generated and stability
critical spectrum
density S, and maximum - 1
intensity of excitation n=1.2, ¢=0, a=1., p=0.2
Fp, were calculated.
Fig.2 is an example of
dynamic instability under random excitation.
S, and F, for several n,u,and B with one of
random excitation are tabulated in Table 5
from which effects of n,a and B on S, and Fy
can be examined. It seems that inclination
of variation of f.., square root of S, and
Fp with respect to system parameters is
quite similar with each other. Fig.3 shows
the frequent diagram of S, and F, of various
random excitation with fikxed structural
parameters, and correlations between S, and F, are plotted in Fig.4. Fig.3
indicates the insuitability of application of simple distribution density
function. The fact that S, is not correlative with F; as shown in Fig.4 points
out that one of the most fﬁndamental and necessary researches on dynamic insta-
bility with random or earthquake excitation is to find a suitable indicator of
intensity of excitation.

o Frequent Nuub.

1.0 0. 0.0750.
n=1.2, ¢=0, a=1., g=—.

Fig.3 Frequent diagram of Sy and Fp

Fig.4 Correlation between Sp and Fp

2. Analytic Prediction of Critical Excitation

As the first step of the research on the prediction of stability limit, the
case of sinusoidal excitation will be treated in this paper.

It is easily assumed and confirmed numerically that % = X = 0 holds at t=tjp.
It can be concluded, therefore, that the necessary condition for occurrence of
dynamic instabilities just like those shown in Fig.1 is o? - 38 20. If xl(Exlt

=t1) satisfies, moreover, the condition dF(tj)/dx; = 1 + 20xy + 3Bx§ < 0,
successive response is unstable. Therefore, when x; satisfies
(i) x72 < x7 < X717 for B > 0, (ii) x3 < X795 X171 < X] for B < 0 oo (6)

response is unstable. In case of (i) displacement of the system snaps through to
more larger dynamically stable position (there exists limit in displacement) and

in case of (ii) displacement increases rapidly to infinity after tj. xj; and xj9

represent X1 relevant to extremum of F(tp).

Steady state solution of eq.(5) Solution of asymptotic expansion and averag-
ing provides(Ref.5)

x(t) = &7 sinE + b, sin2t + &3 sin3E, £ =nt + 6 ceee (7)

where ¢; N &3 are functions of a, B, f, and an amplitude parameter A which is
determined by the following equation.

(3B/4 -50%/6)A% + (1 + afy/3 = n?)A - £, =0 seee (8)

Eq.(7) with eq.{8) does not present instability phenomena like those in Fig.1.
The well known jump phenomenon presented by eq.(8) is different than that
discussed here. This solution, therefore, is of no use to obtain f.,. The
method discussed by Leipholtz(Ref.6) deduces the same jump critical circular
frequency of excitation and is not applicable to our problem.

Poincaré map Setting as £ = 0, t = 207 + t, and t, = 0.2, (xps %) is
numerically calculated and plotted as Figs.5. These figures show continuous



rotation of points plotted rather than staying at one position -
and denies feasibility of eq.(3). Figs.5, however, seem to ; 3
suggest that the period of rotation is relevant to fj,. \*x_,_vj
Poincaré map-II Plots of (xpsxp+7) are depicted in Figs.6 in {ang. 05
order to examine recurrent character of x;. It becomes evident
from Figs.6 that transfer matrix H which satisfies the
following equation

[xn+1s knt1]t = H [xps %]t
is dependent on n and SRy
that deterministic . ya £=-0. 0882 =-0. 068

¢’ .
by 1
w 4

expression of H can not y : P .o o

be obtained. For f, in 7 3 4 e AF )
proximity of fer, e 1 . 7 : EREa F

plotted data shape into Q.. s T, . '.6'. "

a triangle as a whole f=-0.05 -4 o . -
(Fig.6-b). If such a t=-0.068 . et 0882
parameter that is Fig.6 Example of (xp,xp+q) plot

Fig.5 Example of

relevant to shifting Poincare map

from Fig.6-a to Fig.6-b could be found, f., would be determined.
Poincare map-III  In order to make clear the influence of beat, that is, super
or sub harmonic resonances, the point [(xps7 - xp)s (xps2 - Xpg1)] is plotted in
Fig.7. If all points e Teraae
plotted one by one R v ey A
stay always in the . }

first or third

"
Sree shesens

2.00
quadrant in Fig.7, ‘
response is in . ; feeer
dynamic instability. T oedeeeert e
But, Fig.7 denies the .00 f
existence of such a f=°QH1g 0 §=-°'203 L
state. If abscissa . n=i.2 =0, F— - #=0.1 Fig.8 Estimation of f
and coordinate in Fig.7 Example of Poincare map-III cr

Fig.7 are represented as X and Y, respectively, some data seem to be on the line
of ¥ = -X + const. when f, is in proximity of f.r(Fig.7-b). Taking lines of Y =
- X and Y = X as new abscissa X and coordinate Y, respectively, and representing
the outline curve of data plotted in the third quadrant as follows,

Y=4X*+BX+C eeee (9)

coefficient A will be used as a indicator of stability limit. If A approaches to
zero, relevant f, is regarded as for. An example is shown in Fig.S8.

Fourier analysis of x(t) in stability region Some prevailing circular
frequencies in stability region included in x(t) with f.r are tabulated in Table
6. This table indicates that x(t)(t<tj) can be represented as

x = Dy + D7 sin t + Dp{sin, cos}(at) + D3{sin, cos}{(1-a)t} + ==+

and a seems to take on the value as

€, 2, 1 +€e,1-¢€, 1+ 2, 1-2e, 2, ©®secee
where € is a basic circular frequency parameter. € can be easily found from
Poincaré map as inverse of rotation number. This results may infer that dynamic
instability in transient region, which behaves as snap through in static insta-
bility, is just like chaotic instability which is caused by a lot of bifurcation
path.
Rough estimation of f.r Setting as ¢ = 0, the following equation is deduced
from eq.(5).

2, 1 o B t t1. |
[ g— x? + 3 x? + 3 x% ¢+ zx“ ]01 = for 0 xsin t dt cecee (10)

ty: time at which x(t) breaks out to instability path



Many numerical examinations indicate that

i

X) = x7 =0, x3 = x(t7) seces (11)

Thence, 2 3 )
x] + a x] + B x] = for sin t] cceee (12)

In order to calculate the work done by excitation respondent wave shape should be
predetermined. Referring to the results of Fourier analysis, x(t) is set as

x(t) = D, + Dy sin t + Dy(cos at + cos bt) + D3(sin at = sin bt) «+(13,14)

Table 6 Fourier analysis of x(t)

+ side implies eq.(13) and - side is eq.(14) in stability region with fop
in this expression. If & and b are previ- » « Circular Frequencies of Prevailing Terms
ously given, unknowns of Dy ~v D3, £, and t] 1 2 3 4 5 5

Lo 1.000| 1.133| 0.133| 2.000 0.867 | 1. 2666

are calculated from these four equations and
two initial conditions. These unknowns, 0.8
however, can not be obtained directly

because of nonlinearity of egs.(10) and
(12). In the calculation of x; from eq.(12) |*°
the condition of eq.(6) is taken into

1.000| 1.133| 2.000| 0.133| 0.867|1.2750
1.000| 1.133| 2.000 | 0.133( 0.867 | L. 2666
1.000| 1.125] 0.875| 2.000| 0.125|1.2416
0.8917 | 1.000 | 0.7833 | 0. 1083 | 1. 1083 | 0. 6750
0.8917 | 1.000 | 0.7833 | 0. 1083 | 1. 1083 | 0. 6833
0.8833 | 1.000|0.7583 { 0. 1167 | 0. 6417 | 1. L167
0.8833 | 1.000 | 0.7667 | 1.1167 | 0. 1167 | 0. 6500
1.000 | 0. 7167 | 0.2833 | 0. 4187 | 0. 5833

—ie e

§
1
0

—le e
ol o

LR R R RN
ol NN RN SN,

1.000 | 0. 7167 | 0. 2833 | 0. 4250 | 0. 5750
account. . . . 12f 05~ 1.000 | 0. 7167 | 0.2833 | 0. 4250 | 0. 5750
Many numerical examinations lead to that 0.1 1. 000 | 0. 7000 | 0. 3000 | 0. 4080 | 0. 5920 | 1. 3000
. . Y 2 X - 2 3
assumption of sint] = 1 seems to be valid. % 20 %o s £/l - vt (1) < fosin

Results of this examination will be summarized as follows.
(1) Case of xo = 0, %o = £o(1-n2) ( if n=1, Xo=-f,/2)

When we set as @ + b = 1 (applicable ton z 1.), for solved by using eq.(14)
differs maximum 20% from accurate one given in section 1. In this case, sinbtj
takes on the value of 0.411581 and that with accurate fcr becomes as 0.414366,
That is, the difference between them is very trivial. This implies that fcr is
very sensitive to the value of sinbt] in this treatment. If the work done by
excitation is neglected, fcr of N=l.2 is in very close agreement with accurate
one, but for with n - 1.0 leaves from that. If eq.(13) is used, Sinbt] can not
be successfully determined. But, if sinbt] is set previously as 0.45 in this
case (thence, all equations concerned are not simultaneously satisfied), fcr
obtained shows very good agreement with accurate one. And, moreover, fcr becomes
not so sensitive to the change of @ and b. The case of a-b=I in eq.(14) is
included in the case of a+b=1 in eq.(13).

(2) Case of Xo = const.y %o = 0

Usage of egs.(13) and (14) is unsuitable because Sinbt] can not be determined
for a + b = 1. 1If sinbt] is predetermined, desirable results can be obtained,
though there exists a equation which can not be satisfied.

From the examination just above mentioned it can be concluded that all
unknowns included are too sensitive each other and to get desirable results is
rather difficult except the treatment of predetermination of sinbtj, Criterion
to predetermine sinbtj, however, is not definite. But, since this procedure is
very simple and can be executed with small personal computer, this will be very
practical provided sinbt] is predetermined through a few numerical examples.
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