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SUMMARY

A method is explored of modeling a coupled system of main structure and sub-
structures by way of modal analysis. The generalized coupled model is constructed
from a sequence of static displacements fields generated from uniform accelera-
tion modes in the expected direction of excitation. By reducing the vector space
to pairs of primary and secondary structure modes an approximation is obtained
from which a generalized response spectrum method and a corresponding numerical
scheme can be derived. The present generalized modal response spectrum method
shows a number of advantages over conventional methods, such as fewer modal de-
grees of freedom, no truncation error, simpler modal superposition and direct use
of earthquake response spectra.

INTRODUCTION

The design of nuclear power plant interior structures requires the considera-
tion of a large number of loading, operating and emergency conditions. The analy-
sis of a subsystem attached to the main structure at several locations, and sub-
jected to the motion of the main structure from earthquake excitation is traditio-
nally carried out in a decoupled fashion using floor response spectra. For earth-
quake loadings acceleration time histories have first to be constructed from the
given earthquake acceleration spectra.

The analysis of the main structure proceeds in three steps. First, a free
vibration analysis is carried out up to a frequency selected by the analyst based
on design specifications. Second, a modal time history analysis is performed to
determine the acceleration time histories at all the attachment points of subsys—
tem supports. Third, the acceleration time histories are transformed into accele-
ration spectra according to standard nuclear power plant design practice.

With this prerequisite main structure analysis work completed the subsystem
analysis can proceed using the response spectrum method including the effect of
multiple suport excitations (Refs.1,2,3).

This cascaded computational procedure to predict the maximum response of a
substructure attached to a main structure gives rise to the following considera-
tions for improving the computational procedure:

-~ direct construction of the floor response spectra when the excitation of

the main structuré is defined by spectra;
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- evaluation of phase relationships in the motion of the support points;

- coupling effects of the subsystem with the main structure;

- superposition rules of maxima resulting from different load components

and different respomnse modes;

- correction of modal truncation errors;

- construction of simplified analysis procedures.
The present paper addresses the reduction of effort for seismic analysis of sub-
systems by modifying the free vibration analysis of the main structure (Ref.4), by
avoiding the construction of floor response spectra and by shifting to a higher
degree of computational automation. The other aspect is the improvement of accura-
cy by attending to the list of desirable features mentioned above through the con-
struction of a dynamic modal main structure - subsystem combination.

ANALYSIS OF THE MAIN STRUCTURE

The main structure is characterized by three system matrices, the mass matrix
M , the damping matrix C_ and the stiffness matrix K . The loading consists of a
base acceleration time history ® U (t). The matrix i?is the spatial distributions
of the excitations throughout the flain structure. For each separate time history
there is one vector in the matrix 4.

The complete equation of motion of the main structure is given by
MU+CU+KU=-M’Z§g(t) (1)

This equation is then transformed by the introduction of the free vibration modes
¥ resulting from the eigenproblem

[, ~em]¥=0 . @)
so that
U=¥yXx . (3)

Seismic excitation can now be dealt with through either modal time history analy-
sis or a modal response spectrum analysis (Ref.5) using the modal participation
factors
T
L=9n “

The use of free vibration modes decouples the equations through the diagonal ma-
trices

~wT _
M =¥Me=1 (52)
[ tfgmg = diag [z}'ioi:[ (5b)
T ) 2

The computation of the free vibration modes g. and frequencies @. is very
time consuming. More modes than the number of modes actually needed for a particu-
lar load distribution 4 are computed. At a later stage in the computation, for a
large number of modes, the modal participation factors in eq.(4) are negligibly
small.

Conventional dynamic substructuring methods are usually biased towards compo-
nent free vibration modes (Refs.6,7). Early applications of dynamic substructuring
techniques in large complex space flight structural systems (Refs.8,9) have used
three types of modes

-~ component free vibration modes

- static displacement modes

~ uniform acceleration modes
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In particular the use of uniform acceleration modes has shown a significant
advantage over free vibration modes and arbitrary static displacement modes (Ref.
10). Uniform acceleration modes are generated in a way similar to the Vianello-
-Stodola method for successive computation of approximations to free vibration
modes (Refs.11,12).

The first uniform acceleration mode is computed from
*

R P =1u1 (6)
1 -—m—

where f is the particular load spatial distribution. This vector is normalized by
requiring

~T ~
= 7
M 411 1 (7
The higher modes are computed from the recurrence relation
oy ~
L .4 Lo (8)
The mode ? is ihfnorthogonallzed with respect to M to all previous modes
v i ~y» ~ ~T 7%
= LY. . = 9
Y] Lyl g"_ JLP'J 3 CJ WJM q’l E) ( )

which is then normalized according to eq.(7)(Ref.10).

When a sequence of uniform acceleration modes are used for the modal trans-
formation of the equations of motion, the transformed damping and stiffness matri-
ces are not diagonal. By solving the eigenvalue problem

[K —sz]eL =0 , (10)

S TEZLZ

where_v ~T 1
L . )

the equation of motion can again be diagonalized. This produces the modes which
can now be used for transforming the original equation of motion. They are

=¥ . (12)

Since these uniform acceleration modes are directly related to the load pattern ¥}
and the mass distribution fewer of them are needed compared to the use of free
vibration modes (Refs.8,9,10). The above procedure is called the WYD Ritz vector
procedure (Ref.14). Improved versions of this procedure, called LWYD, have been
investigated in (Ref.14) showing more stable orthogonality of the Ritz vectors ge-—
nerated. The computational procedure is much simpler and mor effective than the
solution of large scale eigenvalue problems. Egs.(6) through (12) have to be com—
putationally performed, of course, for each load pattern R. Earthquake loadings
require one load pattern for each of the three translatory motions. Base rotations
require additional vectors 1.

Modal time history and modal response spectrum analysis can be carried out as
usual with the additional advantage, however, that no correction for modal trunca-
tion errors is required. Even if there is a large number of load patterns the ap—
proach described here is still more effective than the use of free vibration modes

ANALYSIS OF THE SUBSTRUCTURE

The substructure is described by its system matrices M , C and Ks for mass,
damping and stiffness, respectively. The excitation of the subsgructure is entire—
ly due to support acceleration. The equation of motion of the substructure is
given by

MV +CV+RV="1F(t) (13)
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The vector !, indicates each support degree of freedom, one at a time. The func-
tions F (t) are the corresponding interface forces acting on the supports.

The substructure displacements V are transformed by two typed of modes. The
substructure free vibration modes assume all support points to be fixed. They are
computed from

[k, - ]d-0 . (14)

In addition, static displacement modes ff are computed by assuming a unit displace-
ment at each support degree of freedom, one at a time,

=k, - (15)

The matrix contains the support springs. The substructure displacement vector V is
thus approximated by

“byenz . o

The modes f can be computed in the same way as suggested for the main struc-—
ture, from eqs.(6) through (12), using the substructure matrices K_and M_ and the
vectors !, obtained from the static solution of eq.(15). For each Eﬁpport aegree of
freedom a set of modes ® derived from uniform acceleration modes is required. Most
interior subsystems are attached to the main structure of a power plant at just a
few points so that the number of vectors % remains low. Possibly, for a large num-
ber of attachment points, however, the regular free vibration modes may be easier
to handle. The diagonal matrices of the transformed problem are

- :QTMSQZ -1, (172)
= ¢Tc $ = diag z,r.a)j R (17b)
K dia &) . 17¢)
—yy .f ¢L g (
The other matrices involve products with the matrix 1:
T Y
M z - .’!’. l_{..sl’ 3 _M_.yz = .bizy i _}és—q’ 2 (18)
and similarly for ¢, C__, K and K__.
=zz’ —yz’ —zz ~yz

MODAL SUBSTRUCTURE MODEL

The system to be analyzed consists of a main structure (power plant building)
and a major substructure (piping system, mechanical somponent or equipment). The
two modally transformed matrix models are coupled via the interface forces F (t)
(Refs.15,16). For the main structure the modal equation of motion is

»e

Ero XK X=-L0 () -¢F (19)

in which E; is the modal matrix evaluated at the interface locations of the sub—
structure. For the substructure the modes Q are fixed at the support points and
the support motion is described by the vectors %. The subsystem modal equation of
motion is

¥] [c Y] [K
ton T S o %]
- . ¥
M i C K
—zy Ezz Z —Zy ,Ezz Z —zy ‘—ISZZ Z 0 (20)

Both modal models are combined by eliminating the interface forces from eqs.(19)
and (20) and observing that the interface motions are determined by the main
structure modes Z=Y X. The combined set of modal equations contains 1 generalized
main structure coordinates X and m generalized substructure coordinates Y. The n
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interface coordinates Z have been eliminated from the set of equations. The next
step in constructing a modal substructure model concerns the diagonality of the
generalized mass, damping and stiffness matrices. These matrices are diagonalized
by neglecting the off-diagonal terms except the ones which couple main and sub-
structure modes. This decouples the modal equation of motion to pairs of genera-
lized coordinates, X. and Y.,

i i
. . 2 .
g meg (V5] [PRirtean ooy [ %] [QntRan Rag || K] _ [T L% ®
. . 2 =
.. 1 Y. c.. 2 Y. k.. Y. 0 (21)
"ii i1 | Rt Soifl ¥l | Fss @ L'
The coefficients m.,, m.., c.,, k,. are computed from
ii’? Tij’ Cii 1J
n.. =9 M ¢ m,. =@ Ty b, (22)
ii = Hzezziz ij = ezt =s—j

and similarly for the damping and stiffness terms. There are 1 by m nested pairs
of equations as indicated in eq.(21). The solution to the 1 by m pairs of coupled
two-degree-of-freedom equations may proceed along the path of time history and
response spectrum analysis. If a time history solution is desired each pair of
modal equations of eq.(21) is integrated over time and the solutions superimposed
onto each other.

RESPONSE SPECTRUM METHOD WITH THE COUPLED MODEL

The solution of eq.(21) by the response spectrum method requires three compu-
tational steps before the modal maxima can be superimposed following one of the
various superposition rules.

First, the main structure response maxima are determined from a modal res—
ponse spectrum solution of eq.(19) in which the substructure properties are con-
tained only in an approximate manner in the same way as all the other substructu-
res attached to the main structure are represented. From this response spectrum
solution the modal displacement maxima are obtained as

= L;S,@,,5,) (23)

The interface forces in eq.(19) are momentarily disregarded. It is assumed that
the choice of modes derived from the uniform acceleration modes will make the mo-
dal truncation error negligible. Seismic acceleration spectra are given as input
to the analysis directly with no conversion to time histories necessary.

Second, a time history solution of the coupled two-degree-of-freedom equa-
tions is obtained in which a modal unit impulse load is applied on the main struc-—
ture generalized coordinate X. in eq.(21). The unit impulse response can also be
obtained by subjecting the syétem to an initial modal velocity X, (#) with the Y-
—-components all at rest up to t=T. The respomnse to this excitatidn is obtained
either analytically as in (Ref.15) or can be computed numerically for all combina-
tions of main structure modes i and substructure modes j. From these time history

s 20 2
results the maxima Xi and Yj are recorded.

Third, the maxima of modal response oﬁsthe sggstructure are obtained by assu-
ming that the ratios of the actual maxima X. and Y are identical to the ratios of
the maxlma from the unit impulse function, 2 and 1¥°. with X; known from eq.(23)
and X and ?0 the desired modal response maxima are for the pair (i,j)

Yj(l,J) = (xi/xi)Yj . (24)
The contributions of all primary structure modes are found by superposition over

all i modes. This formulation has been called "'generalized response spectrum me-
thod" in (Ref.15). The main structure maxima XS need to be computed only once for
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each main structure excitation. The number of required modes depends on the choice
of modal transformation functions in the definition of the generalized degrees of
freedom. The further superpositions follow the rules of conventional response spec-
trum methods. The main difference is the approach for finding the modal maxima of
the substructure. The method can be easily incorporated in a general purpose fini-
te element computer program.

CONCLUSIONS

The method to analyse substructure attached to main structures has been rede-

signed to improve accuracy and to reduce computational effort. There are several

features of the present computational procedures which compare favorably with the
conventional approach

- generation of uniform acceleration modes from load pattern by recurrence
relation instead of large eigenvalue problem

- transformation to modal degrees of freedom with fewer generalized degrees
of freedom

- construction of response maxima of the main structure from seismic input

- computation of coupled substructure response maxima for idealized load,i.e.
unit impulse function, with nested 2-dof systems
("generalized response spectrum method")

- scaling of the idealized response from unit impulse loading of the 2-dof
systems to match the actual response of the main structure

- superposition of all modal substructure maxima for each mode.

Numerical computations with uniforn acceleration modes and the partially diagona-—
lized coupled 2-dof modal substructure show promising results.
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