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SUMMARY

An equivalent torsional excitation component for earthquake design of
buildings is proposed. It is inversely proportional to a wave propagation veloci-
ty characteristic of the local soil; which should be evaluated as a frequency
dependent parameter to insure equivalence with eccentricities specified by cur-
rent codes. The spectral analysis under the combined action of the translational
and the rotational component is discussed, and a procedure which requires only of
the displacement spectrum for computing the modal maxima is presented.

INTRODUCTION

The excitation of torsional modes due to earthquake motion introduces design
requirements that for long have been thought to increase significantly in the
inelastic range. Though the results of some research (Refs. 1,2) tend to point
out that that intuitive assumption may not be completely true, torsion continues
to be a menacing proposition when excursions into the inelastic range are to be
considered, particularly so, for buildings with little torsional redundancy. For
this reason, it would be desirable to have greater safety for forces originated
in torsion than for those due to the translational part of the response, in much
the same way as in reinforced concrete design a flexural failure is preferred to
a shear failure. The required comparisons of forces "considering torsion" with
those "not considering torsion” of current codes and specifications are indirect
attempts to achieve this purpose. The authors have shown (Ref. 3) that it is not
possible to define, for that purpose, origins of eccentricity having a physical
meaning in a dynamic problem, except for the very restrictive class of buildings
they have called "compensable”. A gquasi-compensability can be defined, but the
effort needed to limit the range of validity of such an approximation has proved
to be so time consuming, and the ranges themselves so narrow (Ref. 4), that a
scheme for dealing with torsion that does not require the definition of origins
of eccentricity has been considered preferable.

An alternative that avoids the definition of eccentricity, and allows to
deal with torsion independently if different safety factors are desired for it,
consists in introducing torsion under the form of a rotational component of the
base excitation. A secondary advantage of such a scheme, which of course, has to
be three-dimensional, is that it can be used with spectral superposition formulae
that consider the effect of modal coupling (Ref. 5), thus eliminating the need of
introducing, as some codes do, "dynamic amplification factors" to account for
tuning effects. The rationale backing such a procedure lies in visualizing
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kinematic soil-structure interaction as a wave propagation problem in the way
Newmark did in a classical paper (Ref. 6) in which he showed that this
interaction is equivalent to a torsional component of the ground motion. He
further showed that the equivalent rotational component can be interpreted, for
one-story symmetrical buildings, as structure dependent eccentricities of the
order of magnitude of those of seismic codes.

AN EQUIVALENT TORSIONAL COMPONENT

The kinematic interaction in a surface structure with rigid base can be
approximately determined on the basis of geometric considerations. In fact, the
local displacement components of the ground involve a point rotation about a
vertical axis given by

2 | ox dy
which can be related to time derivatives following the scheme originally
presented by Newmark (Ref. 6), based on the analysis of wave propagation in the
vicinity of the point. The displacement components can be represented as the sum
of a number of wave forms travelling in both surface directions at their own

respective apparent velocity. Such a representation, i.e.,

u, = If.(y - c .t) + LF.(x - C_.t) (2a)
g i yi Jo _ X3
vg = Tgi(x - cpt) + IGH(y - Cyt) (2b)

is exact for body waves, and should be acceptable for surface waves in distances
of the order of magnitude of the plan dimensions commonly found in buildings.
Lower case letters are associated with shear waves, while upper case letters are
related to compressional waves., A further simplification can be introduced if
the problem is focused from a design point of view, recognizing that what has to
be considered is an earthquake in the most unfavorable direction. It is then
reasonable to assume that the waves travelling in that direction, say direction
y, must be substantially larger than those propagating in the orthogonal
direction, x. As a consequence, the expressions in (2) can be rewritten as

ug = If  (y - cyit) Vg = ZGj(y - Cyjt) (3)
from whence the space derivatives of the ground motion components are
df.(n) v
dug_ p 2Eiln) -
3y z an I 0] (4)
and the x direction ground velocity is
dfi(n)
a_ = -Lo , ——————
g Cyi an (5)

If the value of all the wave velocities in equation (5) were identical,
comparison with the expressions given in equation (4) would lead to the result

u, 1
9. - =
dy c'g (6)

in which ¢ is the common velocity. Since this in general will not be the case,
equation (6) can only be regarded as an approximation in which c is the average
of the individual apparent velocities. Assuming this approximation to hold true,
substitution into equation (1) yields the estimation of the point rotation

1

6B = ~ —

2c ug N

which can be interpreted as a solid rotation of the rigid base, provided the plan
dimensions of the foundations are not large.
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This expression differs from Newmark's in a one-half factor, and can account
for the overestimation that he later found in his formula for torsional effects
(Ref. 7). This difference is due to the fact that in his derivation, Newmark
argued that the two space derivatives in the definition given by (1) are bound to
be almost equal in value, with opposite signs, disregarding that such an
assumption implies a vanishing shear deformation of the ground surface. The
value that should be given to c is open to discussion. It is certainly not the
velocity of shear waves in the local foundation soil, as it must include the
contribution of refracted waves of much larger apparent velocities. It must be
dependent though, on local soil properties, perhaps with due consideration to
fault distance that may alter the average slope of incoming waves. Velocities of
up to ten times the shear wave velocity in the local soil have been suggested
(Ref. 7) to take into account the sloping of refracted waves. At the present
stage, a recommendation as to the values to be taken can only be related to
present codes, as the torsional requirements for symmetric buildings with a low
coupling of rotational modes, and founded in firm soil, should not be increased.

TWO-COMPONENT OR COMPLETE EXCITATION

Newmarks's original paper and the work of people who have followed his
scheme (Ref. 8), are intended to be used in symmetrical buildings, in which an x-
direction excitation will affect the x-direction modes only, and a torsional
excitation will only affect the torsional modes. In such cases, the use of a
torsional spectrum, defined as if the rotational component were an independent
excitation, is clearly understandable. However, in a general case in which
coupling allows at most to classify modes as predominantly x or y-direction
modes, or. predominantly torsional modes, all the modes of the building will be
excited by either type of ground motion, so that the usefulness of the torsional
spectra cannot be taken for granted. The answer to this problem requires the
analysis of the structure under the combined action of the two excitation
components, for instance, the x-direction ground displacement together with the
rotational component proportional to the x-direction ground velocity. The
equations of motion of an n-story building under this "complete excitation" can
be written in matrix form as

1

(M)}{8} + [C}{s} + [KI{s} = - i;g[m{r} e

a_[M]){R} (8)
g

where the displacement vector {s } has as components the displacements in the x
and y-directions of the story centers of mass and the rotations of the story
diaphragms, the matrices [M], [C] and [K] are the mass, damping and stiffness
matrices corresponding to those degrees of freedom, and the vectors {r} and{R}
are the influence coefficient vectors associated with the x-direction and
rotational excitation, respectively.

Notwithstanding the presence of the time derivative of the ground
acceleration, that has to be evaluated through numerical differentiation, direct
step by step integration of these equations has been found to offer no
difficulty, at least within the range of periods of ordinary buildings. However,
for modal analysis, a scheme that does not require providing the time derivative
can be easily devised. Such a scheme is useful in itself for time history
studies, but its main significance lies in that it allows a workable spectral
superposition procedure to be defined.

Once modal uncoupling has been achieved, the modal equation associated with
a mode of frequency w and modeshape {¢}, will have the form

g Wy + wiy = - &5 - L& (9)
Y + 2Cwy + Y ug ug

in which the two modal earthquake-excitation factors, associated respectively to
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the ground displacement and to the ground velocity component of the excitation,
are given by

g o leyenmi{r} Lo L 1o}t mMI{R})

(6 YEIMI (7 = 2c TorEmM{0} (10)

The difficulty introduced by the second component of the excitation is but
apparent. In fact, if the solution of

‘y'+2z;wy+w2y=~{ig (11)

is known, it will also satisfy

{;+z;m§+w=9=~3g (12)
so that summing both equations multiplied by the appropriate coefficients will
yield the expression

(LY + LY) + 2g0 (LY + L§) + w2 Ly + Ly) = - £b, - Ly (13)
a result that can be interpreted as the identical satisfaction of the
differential equation (9) by writing

y(t) = 4Ly(t) + Ly(t) (14)

This function will then be the solution of the problem provided the initial
conditions, which become somewhat complex under the two-component form of
equation (14), are satisfied. However, this is of no concern if the structure is
at rest at the begining of the earthquake, and if the ground acceleration builds
up gradually, without a starting shock.

The two-component combination leads immediately to time history solutions in
a modal superposition procedure. However, for spectral estimations of maximun
response values, the application of these results needs further elaboration. The
first and direct approach to the problem is to define a parametric family of
spectra, giving directly the maximun value of the variable

z(t) = y(t) + Tp{((t) (15)

in terms of the parameter T _, which has to be set as equal to the ratio between
the two modal excitation factors of equation (10). However, both the definition
and use of these parametric spectra is cumbersome, and when they are actually
drawn for specific records, they strongly suggest that the parametric value can
be directly computed from the displacement and velocity spectral values as

S,2(WTy) = Sg%(w) + T8 2(w) (16)

In justification of this tendency, it can be argued that the variables y(t)
and y(t) are independent for weakly stationary Gaussian processes. However, the
nonstationarity of earthquake records is an important factor in the response of
multidegree of freedom systems with low damping (Ref. 9), so that a different
explanation must be found. This can be done by resorting to the solution of the
differential equation (11) in the form of a convolution integral, which
neglecting damping, can be written as

y(t) = A(t)sinwt - B(t)coswt (17)
in which
1 t“ t
Alt) =+ | §_sinutat B(t) = L | § _coswtat (18)
o 9 W, 9
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The functions A(t) and B(t) are simple integrals, so their derivatives are
equal to their integrands. Hence, on differentiation of equation (17), the terms
containing those derivatives conveniently cancel out to yield as a result

y(t) = wA(t)coswt + wB(t)sinwt (19)
Equations (17) and (19) can be restated as
y(t) = q(t)sin(wt + &) y(t) = wa(t)coswt + o) (20)

where

qg(t)? = A2 + B3 q(t)cosa = A g(t)sino

]
w

(21)
The modal coordinate Y(t) can then be expressed as
Y(t) = Q g(t)sin(wt +a+8) (22)

where

Q2 = £2 + L2 w32 0 cosp = £ Q sinB = Lw (23)

These relationships can be easily used to show that equation (16) is indeed
a good approximation, for moderate to large frequencies. A better approach is to
directly recognize that the maximun value of Y(t), for that range of frequencies,
is approximately equal to the the pseudo-amplitude Q q(t), due precisely to the
high frequency associated with the accompanying quasi-sinewave motion, while for
low frequencies, the phase angle g will tend to be small, so that there will be
no great error in taking Y(t) to be equal to Q times the response y(t). In both
cases, it will be appropriate to express the maximun of Y(t) as

Y| Q S4(w) (24)

max

a formula which requires only the specifications of the displacement spectrum,

ADJUSTMENT TO CURRENT CODE ECCENTRICITIES

As was pointed out before, the ground velocity to be included in the defini-
tion of the rotational component should be adjusted to the eccentricities curren-
tly defined in most codes as five percent of the building dimension perpendicular
to the direction of the force under consideration. Such a calibration of the
parameter is necessary since those eccentricities can be regarded as leading to
safe designs of regular buildings located in firm soils, for instance, for symme-
trical buildings in a soil classified as Type 2 by the SEAOC recommendations
(Ref. 10). The necessary adjustment can then be made by considering a
symmetrical one-story building under the two-component excitation, which due to
the uncoupling of the translational and rotational modes, leads to the results

_ kpwpSg (we)

nax 5o (25)

vmax = kxsd(wx) M

from whence the implicit eccentricity can be calculated as

p? wg® S4(we)

e = ——p——— (26)
2c wx“ Sq(wx)

This result shows that in order to keep the eccentricity implied in the two-
component scheme at the desired five percent level, the velocity c¢ should be

taken as 2 3
P” wp” Sq(wp)

¢ =10 ———F——
10 0 7 Sg(uy) (27)
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in which a is the corresponding dimension of the building, and P 1is the
inertial radius of gyration. This frequency dependent expression should be
regarded as valid for deep cohesionless or stiff clay soils. The value of c has
to be amplified by 1.5 for rock and stiff soils (Soil Type 1), or reduced by 1.5
for medium clays and sands (Soil Type 3), to account for the influence of soil
(Ref. 10) properties in shear wave velocities, considering that in ideal condi-
tions, the velocities are inversely proportional to the predominant soil periods.

CONCLUSIONS

An equivalent torsional excitation component for earthquake design of
buildings that is proportional to the ground velocity and inversely proportional
to a given wave propagation velocity characteristic of the local soil, has been
proposed. A factor of two in the corresponding formula, with respect to known
results, has been found. At present state of knowledge, the required wave
velocity is to be evaluated as a frequency dependent parameter that introduces,
for symmetrical buildings, implicit eccentricities equivalent to those specified
by current codes. This equivalence is assumed to hold for intermmediate, firm
soils, and modifications leading to amplification of torsional effects for soft
soils and reduction for stiff soils, have been proposed. The spectral analysis
under the combined action of the translational and the rotational components was
discussed. The use of torsional spectra is not directly applicable, except for
uncoupled symmetrical buildings, so a procedure which requires only of the
displacement spectrum for computing the modal maxima, was presented.
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