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SUMMARY

An optimum seismic design for highway bridges should provide a reasonable balance between the
shear forces transmitted to the supports and tolerable deck displacements. A simple design procedure is
proposed for base-isolated highway bridges using the inelastic response spectra approach. Simplified
charts are presented which provide a design aid for new bridges as well as the retrofitting and upgrading
of existing ones. The method is shown to be simple and reasonably accurate. It takes into account the
flexibility of the pier and is suitable for code type approach.

INTRODUCTION

Highway bridges are an essential link in the transportation lifeline system. They are required to
remain in service during and after an earthquake event. The majority of highway bridges are two to four
lanes, simple span or continuous over a number of supports with fairly rigid decks in the horizontal plane.
Long span bridges, bridges with curved decks or suspension bridges are normally regarded as special
cases. Recent earthquakes caused substantial structural damage to highway bridges. As a result, much
stricter codes of bridge design are now in use. The main seismic design approaches are the New Zealand
Code (Highway bridge design brief, 1978) (Ref. 1) and the Caltrans (California Transportation) criteria
which was recently adopted by AASHTO (1983) (Ref. 2). Although the design philosophy and procedures
are quite different in the two codes, the resulting designs are similar. In the current design philosophy
for highway bridges it is recognized that it is uneconomical to design the bridge to behave elastically
during a major earthquake. The ductile approach to bridge design is not without its problems. Some of
the difficulties encountered in the ductile design include the need for complex inelastic analysis, proper
detailing of sections during design and construction, concerns for stability and permanent deformation.

Base-isolation techniques provide an alternative approach for seismic design of many new bridges
as well as a convenient way of upgrading existing bridges. When appropriate, the use of special energy
dissipating devices between the superstructure and the substructure can significantly reduce the forces
induced in the bridge structure as compared to non-isolated bridges. An example of the efficient base-
isolation system is the lead-rubber bearing (Ref. 3) shown in fig. 1. The main function of the base-
isolation technique is to decouple the structure from the support. The flexibility of the bearing pads cause
a period shift for the structure normally to the longer period range. Some base-isolation systems provide
energy dissipation mechanisms through the hysteresis behaviour of the bearing. With base-isolation, the
bridge pier can be designed to remain elastic during a severe earthquake and at the same time achieve an
economic design. Most base-isolation devices can be easily replaced after a damaging earthquake by
jacking up the superstructure.
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The objective of this investigation is to develop a simple method for the seismic design of highway
bridges with lead-rubber base-isolation system. The design procedure is applicable to a wide range of
bridges and takes into account the pier flexibility and location of bearings.

APPROACH TO DESIGN

The process of seismic design of highway bridges using lead-rubber base-isolation involves the
determination of the following:

e the size and location of the elastomeric bearing and lead inserts

e the seismic forces for pier and abutment design

e the maximum displacement of the bridge deck and bearings.

The proposed design method is developed using the inelastic response spectrum approach. The
bridge system is represented by an equivalent single degree of freedom oscillator. The spring stiffness of
the equivalent system is taken to be bilinear where the elastic and post-elastic stiffnesses are termed Ky
and Ky, respectively.

The equivalent elasto-plastic behaviour of the system was adopted based on experimental evidence
of the force-displacement relationship of the lead-rubber bearing (Refs. 3 and 4). A reasonable description
of the hysteresis loop assumes a post-elastic stiffness equal to the elastomeric stiffness K, and the initial
elastic (i.e., unloading stiffness) K|, = 10 K,, as shown in fig. 2. The yield level of the equivalent one
degree of freedom system is taken to be equal to 5% of the superstructure weight W. This is a commonly
used ratio that defines the shear resistance at yield of all the lead plugs in the bearings. A viscous
damping ratio of 5% of critical damping is assumed for the system.

The piers of the base-isolated bridge are assumed to behave elastically. The deck of the highway
bridge is treated as a rigid diaphragm. Recent analysis by Ghobarah and Ali (Ref. 5) demonstrated that
the rigid deck assumption does not result in any significant loss of accuracy in the analysis of most

bridges. Rigid deck assumption enables the designer to use the design procedures to assess either the
longitudinal or transverse bridge response.

The response of the inelastic single degree of freedom system to a given strong motion earthquake

record is determined numerically. The Newmark-B step by step numerical integration method is used in
the analysis.

V-616



1or

107

100} % = 3mm
25 mm

a5 mm

wr u-umn?

Z z
: g
5 [
5 z 125 mm
b ]
a 100} 23 e g 100}
[4
£ &
g E
G 0ol 10}
1] Thiciness of trtemat 3 Thiciesoss of intormat
& blar toyer, Ny z ratber tayor, Yy
2 10} Q 10
S S
-4
5 {02 1 1 1 g 102 1 1 1
g 10 30 50 70 0 E 10 30 50 70 90
> BEARING WIDTH, B (cm) § BEARING DIAMETER, D (cm)
Fig. 3: Square rubber-bearing Fig.4: Circular rubber bearing
design design
DESIGN PROCEDURE

The proposed design procedure consists of two parts. Firstly, the lead- rubber bearing pad is
selected and secondly the shear forces transmitted to the piers and abutments as well as the deck
displacement are calculated. The procedure is best described in the following point form:

STEP 1:

The weight of the superstructure W, is calculated and the reactions due to dead plus live loads at
the abutment and at the piers are determined.

STEP 2:

A suitable compression strain for bearing e, is chosen. The compression strain should be less than
7% for AASHTO (Ref. 2) and 4% for the Ontario Code (Ref. 6), as examples. The maximum bearing
compression load F, can be determined by dividing the total of the dead and live loads by the total
number of bearings Ny. The required plan dimensions B, for square shape or diameter D, for a circular

bearing can be obtained from figs. 3 and 4 for some selected internal rubber layer thicknesses (also see
Ref. 7).

STEP: 3

The number of rubber layers Ny is selected. The selection of the total rubber thickness t, = Nytj,
should be guided by the stability conditions recommended by the codes

ty< B/3 for rectangular bearings
< D/4 for circular bearings

where t;, is the selected internal rubber layer thickness.
STEP 4:
The shear stiffness of the elastomeric bearings located at the abutment K, is:
Kar = Z(Gy Ap/ty) Mga (§8)]

where G, is the shear modulus of rubber = 0.7 MPa, Ay, is the area of the bearing and My, is a
modification factor:
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Mg = (1 + 0.5ec5)/(1-ecq)
where e, is the compression strain of bearings at the abutment.

Following a similar procedure, the shear stiffness of the elastomeric bearings at the pier Ky, can be
calculated by the formula

Kpr = £ (Gr Ap/t) Migp @

where Mip = (1 + 0.5ecp)/(1-ecp) , ecpis the compression strain of bearings at the pier.

STEP 5:

The equivalent post-elastic spring stiffness for flexible piers is determined by the formula

KPf K (&)]
K, = K + —_—
2 Z ar 2 K +K
n m pr c
where n and m represent the number of abutments and piers, respectively. The stiffness of the pier asa
cantilever is K.. The equivalent elastic spring stiffness is written as:

p K K

proproc (4)
K= 2 p K+ 2 LK +K
n m pr pr ¢
where  pa = Ug Ryr and ppe = Ug Ry where U is the unloading stiffness ratio of the lead rubber

bearing (to be taken = 10 or to be determined experimentally).
Rar and Ry are the ratios of bearings having lead plugs to the total bearings, at the abutment
and at pier, respectively. Ineqn. 4, Ry, = 1 for the case of no lead plugs at the pier and Ry = 1

for the case of no lead plugs at the abutment.
STEP 6:

The maximum response values are determined for various effective periods of the isolated bridge
which is taken to be in the practical range of 1 to 2 seconds. The effective period T, is defined as the period
at maximum displacement considering the tangent stiffness

T =20V W/(gK,) ©

Steps 3 to 5 should be repeated until an appropriate rubber thickness is selected according to the degree of
isolation required.

STEP 7.

The thickness of the internal steel plates may be selected to be up to 3.2 mm (Ref. 7). The thickness
could be increased if desired but this would affect the overall height of the bearing. Stresses in the steel
plates fg, can be determined as follows (Ref. 8)

fst = 0.75 (F/A) (ty + to)/tg (6)
where A isthe area of steel plate,
t1 and tg are the thickness of two adjacent rubber layers, and
tg is the thickness of the steel plate
STEP 8:

The lead plug diameter d, can be determined by taking the total yield force of the lead plugs to be
5% of the total dead weight of the bridge
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where fy¢ is the yield stress of lead = 10 MPa and N, is the number of lead plugs used in the bridge
bearings.

In order to ensure that the lead plug is subjected to pure shear, it is recommended (Ref. 7) that the
diameter be selected within the following limits:

B/6 = d < B/3for rectangular bearing
D/6 = d < D/3for circular bearing
d < 0.67 of the bearing height

If the plug diameter does not satisfy these conditions, the bearing dimensions (Steps 1 to 8) should be
modified.

STEP 9:
The total base shear V, can be determined using the formula
V=SW 8)
where S is the coefficient of base shear given by fig. 5 for different cases of bilinear stiffness ratio (K;/Kg)

against the effective period T. The force on the abutment Vy, the shear in the pier Vp, and the deck
displacement ug, can be determined by considering the stiffness of each element as follows

Va = 0.05 g W + (V — 0.05 W) (K,/Kg) 9)

where gy is the ratio of yield strength of lead plugs placed at the abutment to the yield strength of all
lead plugs

Vp=V -V, 10

ug = (V5 — 0.05) W/Kg, (11)

The bearing displacement upg = ug — Vp/K, (12)
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STEP 10:

The shear strain for each bearing, determined by dividing the lateral displacement by the total
thickness of rubber layers t,, should be checked to be less than 50% as specified by AASHTO and the
Ontario Highway Bridge Design Code (Ref. 2 and 6). Also the compression stress should not violate the
code limits.

The described design method reduces to special cases of superstructures supported on elastomeric
bearings without lead inserts by using K;/Kz = 1. The case of a simple span bridge supported on lead-
rubber bearings can be obtained by using very flexible piers and K{/Kg = 10 for unloading stiffness ratio
of ten. The design charts are simple but cover the different possibilities of lead plug locations, pier
flexibility and stiffnesses of the elastomeric bearings at abutments and piers. The El Centro earthquake
record has been used in the dynamic analysis of the present work. Ideally, a sufficient number of
earthquake records should be chosen as input with the average of the response being used to develop
general design charts.

CONCLUSIONS

A simple and reasonably accurate method is presented for the design of highway bridges with lead-
rubber base-isolation system. The method is a code type approach and is suitable for most design
applications. The method is applicable to typical symmetrical highway bridges with rigid decks. The
pier’s flexibility is taken into consideration. Actual values for the unloading stiffness of the bearings, as
determined by testing, can be used in the design. In addition, the design procedure can accommodate
variations in the bearing stiffness at the pier and abutments and different lead plug locations.
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