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SUMMARY: 
In reliability-based seismic design of a structure, it is important to estimate the maximum response of an inelastic 
oscillator corresponding to a prescribed exceedance probability during a reference period.  This paper first 
investigates the accuracy of the use of either a uniform hazard spectrum (UHS) or a conditional mean spectrum 
along with an equivalent linearization technique to estimate the response.  Then, a new approximation method 
is proposed using UHS along with a modified Capacity Spectrum.  The accuracy and applicability of the method 
is discussed using numerical examples as well as a generic model. 
  
Keywords: Performance-based design, Seismic hazard, Uniform hazard spectrum, Inelastic oscillator 
 
 
1. INTRODUCTION 
 
Predictors of seismic structural demands (such as interstory drift ratios) that are less time consuming than 
nonlinear dynamic analysis (NDA) are useful for structural performance assessment and design.  
Several techniques for realizing such predictors have been proposed using the results of a nonlinear static 
pushover analysis (e.g., Luco 2002; Chopra & Goel 2002; Yamanaka, et al. 2003; Mori, et al. 2006).  
These techniques often use the maximum response of an inelastic oscillator (computed via NDA) that is 
“equivalent” to the original frame.   
 
In reliability-based seismic design of a structure, it is necessary to express the maximum response of the 
inelastic oscillator probabilistically.  Such information could be obtained via NDA, which requires 
thousands of samples; however, the acquisition of such information requires considerable 
computational effort.  In practice, the use of simpler methods such as an equivalent linearization 
technique (EqLT) using an elastic response spectrum seems more reasonable, and design spectra are 
being developed on the basis of probabilistic approaches such as a uniform hazard spectrum (UHS) and a 
conditional mean spectrum (CMS, Baker & Jayaram 2008).   
 
A UHS is obtained by plotting the response with the same (i.e., uniform) exceedance probability for a 
suite of elastic oscillators with different natural periods, and hence, a UHS does not represent any 
specific ground motion (Abrahamson 2006).  Although there exists some correlation among the spectral 
responses of elastic oscillators to a ground motion (e.g., Baker & Jayaram 2008), perfect correlation is 
implicitly assumed in the use of a UHS.  In such a scenario, the response could be overestimated via 
EqLT when a very rare event is considered.   
 
The correlation among the spectral responses could be considered by using a CMS, which is the mean 
spectrum conditional to the event that the spectral displacement of an elastic oscillator with a certain 
period, cT , equals the displacement with, say, 10% exceedance probability in 50 years.  However, 
guidelines for the selection of cT  are not well established. 
 



This paper first investigates the accuracy of the use of either a UHS or a CMS along with an EqLT to 
estimate the response of an inelastic oscillator.  Then, based on the investigation using a generic 
model expressed in a stationary standard normal stochastic process a new approximation method is 
proposed using UHS along with a modified Capacity.  The accuracy and applicability of the method is 
discussed using numerical examples. 
 
 
2 EQUIVALENT LINEARIZATION TECHNIQUE  
 
2.1 Equivalent Linearization Technique 
 
In an EqLT, the maximum displacement of an inelastic oscillator with the elastic natural period, 1T , 
and the damping factor, 1h , is approximated using the maximum displacement of an elastic oscillator 
with the equivalent natural period, eqT , and the equivalent damping factor, eqh , as 
 

1 1( ) ( )I E
D D eq eqS T h S T h; ≈ ;    (1) 

 
where ( )DS T h;  is the spectral displacement of an oscillator with the natural period, T , and the 
damping factor, h , and the superscripts E  and I  represent the elastic and inelastic responses, 
respectively. 
 

eqT  and eqh  are often expressed as a function of the maximum ductility factor of the inelastic 
oscillator, µ , which is defined as 
 

1 1( )I
D yS T hµ δ= ;    (2) 

 
where yδ  is the yield displacement of an oscillator.  Several linearization techniques have been 
proposed (e.g., Iwan 1980, Shimazaki 1999), and among them, the following formulae based on the 
idea proposed by Shimazaki are used in for an oscillator with a bilinear backbone curve this paper. 
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where 2k  is the second stiffness ratio of the backbone curve.  
 
2.2 Capacity Spectrum Method 
 
The capacity spectrum (CS) method (Freeman 1978) can be used to estimate graphically the inelastic 
displacement as the intersection of the capacity spectrum and the demand spectrum.  In order to take 
into account the effect of eqh , the demand spectrum must be adjusted by multiplying it with the 
damping reduction factor ( )h eqF h , defined as the ratio of the spectral response of an elastic oscillator 

with the damping factor eqh  to that with the damping factor 1h .  Because eqh  is a function of the 
unknown value µ , an iterative procedure is generally required for its determination. 
 



In contrast, the response can be estimated directly by considering the demand and capacity spectra in 
an ordinal T - DS  coordinate rather than an DS - AS  coordinate (see Fig.1, Mori & Maruyama 
2007).  The DS  axis can be transformed linearly into the axis of the maximum ductility factor, µ , 
by dividing the DS  axis by the yield displacement of the inelastic oscillator.  The T  axis can also 
be expressed in terms of µ  because eqT  is a function of µ , as expressed by Eq.(3).  Then, the 
capacity spectrum can be obtained by connecting the corresponding values in the linear (vertical) and 
nonlinear (horizontal) µ  coordinates.  
 
On the basis of Eq.(3), the capacity spectrum, ( )SC T , of an inelastic oscillator with a bilinear 
backbone curve and whose mass is equal to unity can be expressed as 
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where 1k  and yC  are the elastic stiffness and the yield base shear coefficient of the oscillator, 
respectively, and the acceleration due to gravity is 9.8 (m/s2). 
 

Figure 1.  Capacity spectrum method in T - DS  coordinate 
 
 
3 PROBABILISTIC SEISMIC HAZARD MODEL 
 
3.1 Probability Distribution Function of Elastic Spectral Displacement 
 
It is assumed here that the basic information on the seismic hazard at a construction site is expressed 
by a suite of probability distribution functions (CDFs) of the maximum spectral displacement of 
elastic oscillators in n  years, ( )E

DnS T h; .  The CDFs and correlation among spectral displacements 
can be obtained through a seismic hazard analysis, which generally involves the following steps. 

 
(1) Simulate the occurrence of earthquakes at the faults that could cause a strong ground motion at 

the site for the next n  years. 
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(2) Estimate the response spectrum at the site for each earthquake considering the variability and the 
correlation among the residuals from the spectrum estimated by an attenuation formula. 

 
(3) At each natural period, take the maximum response among the ground motions estimated in Step 

(2) as the sample of the maximum response in n  years.  
 
(4) Repeat Steps (1)–(3) many times to obtain the probability distribution functions of the n -year 

maximum displacement, ( )E
DnS T h; .   

 
In this research, the seismic hazard at the city hall of Nagoya, which is located in the central part of 
Japan, is estimated and used in the following analysis. 
 
The seismic hazard is estimated by analyzing 4,000 samples for 50-year seismic activities.  An 
acceleration response spectrum for each ground motion at the site is estimated by the attenuation 
formula proposed by An-naka, et al. (1997).  The corresponding displacement response spectrum is 
estimated by multiplying the acceleration response spectrum with ( )2

1 2T π .  It is assumed that the 
residuals of a response spectrum are lognormally distributed with the coefficient of variation (c.o.v.) 
equal to 0.5 (Ikeura & Noda 2005) and with the correlation coefficient proposed by Baker & Jayaram 
(2008), which are taken into account in Step (2).   
 
The mean and c.o.v. of the 50-year maximum spectral displacement of an elastic oscillator with 
h = 0.05, 50 ( ; 0.05)E

DS T h = , are shown in Fig.2.  The correlation coefficients of the 50-year 
maximum spectral displacement between 1T  = 0.3, 0.5, 1.0, or 1.5 s and other natural periods are 
shown in Fig.3, where the natural period is expressed in the logarithmic scale.  The correlation model 
proposed by Baker and Jayaram is also presented in the figure (dashed line).  It should be noted that 
the model is a function of only ξ  = ( )log logi jT T 

 
 

− ; the shapes of the correlation model do not 

change, regardless of the value of 1T , and have the mirror image at 1T . 
 
In contrast, the correlation of the 50-year maximum response is not a function of only ξ  = 

( )log logi jT T 
 
 

− .  The correlation coefficients are relatively close to those of Baker and Jayaram’s 

model when both iT  and jT  are longer than 0.5 s.  However, at shorter values of iT  and jT  
where several intraplate faults could contribute to the response of an oscillator, they are somewhat 
smaller than those of the model.   
  

Figure 2.  Statistics of 50-year maximum acceleration response spectrum 
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Figure 3.  Correlation coefficient of Baker and Jayaram’s model and 50-year maximum response 
 
3.2 UHS and CMS 
 
The UHS can be obtained by sorting the samples of the 50-year maximum values at each period 
obtained in Step (4) and then plotting the values in the same order of the samples.  
 
As mentioned earlier, guidelines for the selection of cT  are not well established for the conditional 
event considered in the CMS.  Here, 1T  is selected as cT , and a CMS conditional to the event that 
the spectral displacement of an elastic oscillator at 1T  equals the value with 10% exceedance 
probability in 50 years is estimated.  It is assumed that a spectral displacement is lognormally 
distributed. 
 
Some argument could arise as to which correlation model should be used: that of the 50-year 
maximum response or that of the spectral displacements of a single ground motion such as Baker and 
Jayaram’s model.  Here, the latter is considered because the former would be site dependent and 
would require simulation such as the one described in this paper, and because the response of an 
oscillator to be estimated would eventually be the response to a single ground motion.   
 
 
4 Hazard model of ( )I

DS T   

4.1 Approximate Estimate of ( )I
DS T  Using UHS/CMS 

 
The exceedance probability of the maximum displacement of an inelastic oscillator in 50 years, I

DS 50 , 
estimated by the CS method using either a UHS or a CMS is presented in Figs.4.  It is assumed that 
the damping factor, h1, is 0.05; the yield base shear coefficient of the inelastic oscillator, Cy , is 0.3  
or 0.5; the elastic natural period , T1, is 0.3, 1.0 (upper figures), 0.5, or 1.5 s (lower figures); and the 
second stiffness ratio, k2, is 0.00 or 0.03.  For comparison, the “accurate” estimate of the exceedance 
probability considering the response of each ground motion in each 50-year of 4,000 samples is also 
shown using solid lines in the figure.  The “accurate” probability is estimated by employing the 
following steps: 
 

(i) Applying the CS method in the T-SD coordinate (Fig.1) to the response spectrum of each ground 
motion during each period of 50 years, estimate the maximum response to that ground motion.  
Both the bias and the error in the EqLT are considered using the function proposed by Kawasaki 
et al (2011). 

 
(ii) Take the maximum response within each period of 50 years as the sample of the 50-year 

maximum value. 
 

Natural period (s)
0.1 1 10

0

0.2

0.4

0.6

0.8

T1 = 1.0

1.0
C

or
re

la
tio

n 
co

ef
fic

ie
nt

50 yr max.
Baker & Cornell

T1 = 0.3

Natural period (s)
0.1 1 10

0

0.2

0.4

0.6

0.8
T1 = 0.5 T1 = 1.5

1.0

C
or

re
la

tio
n 

co
ef

fic
ie

nt

50 yr max.
Baker & Cornell

Natural period (s)
0.1 1 10

0

0.2

0.4

0.6

0.8

T1 = 1.0

1.0
C

or
re

la
tio

n 
co

ef
fic

ie
nt

50 yr max.
Baker & Cornell

T1 = 0.3

Natural period (s)
0.1 1 10

0

0.2

0.4

0.6

0.8
T1 = 0.5 T1 = 1.5

1.0

C
or

re
la

tio
n 

co
ef

fic
ie

nt

50 yr max.
Baker & Cornell

Natural period (s)
0.1 1 10

0

0.2

0.4

0.6

0.8
T1 = 0.5 T1 = 1.5

1.0

C
or

re
la

tio
n 

co
ef

fic
ie

nt

50 yr max.
Baker & Cornell



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  The exceedance probability of I
DS 50  estimated by the CS method using a UHS or a CMS 

 
As seen in Figs.4, there are many cases in which the use of the EqLT with a UHS (dashed line) 
provides fairly accurate estimates, especially when the elastic natural period is longer than or equal to 
1.0 s.  The error becomes smaller when  k2 = 0.03 (Fig.4(b)).  However, when T1 = 0.3 or 0.5 s, the 
error in the estimation obtained using a UHS becomes large.  As T1 is smaller, the correlation 
coefficient is relatively small, which is far from the perfect correlation implicitly assumed in the UHS.   
The error is more noticeable when Cy = 0.5 (Fig.4(c)). 
 
On the contrary, CMS always provides optimistic estimates when exceedance probability is 20% or 
less in 50 years.  The error is especially noticeable when Cy= 0.3 and k2 = 0.00.  In a CMS, the 
condition considered is the elastic spectral displacement at T1 is equal to the value with same 
exceedance probability of I

DS 50 . However, there could be many other possible events of e.g.10% in 50 
years. Such ignorance of possible events could lead to underestimation of the response with a large 
error. 
 
4.3 Investigation through Stationary Standard Normal Stochastic Process 
 
Here, some of the results presented in the previous section are further investigated using a generic 
model expressed in a stationary standard normal stochastic process.  In the CS method, the event that 
the equivalent natural period, eqT , is longer than eqt  corresponds to the event that 50 ( ; )E

DS T h  is 

always above ( )g T  in the range of ( )1 eqT t,  (the hatched area in Fig.6 (a)).  By transforming 

50 ( ; )E
DS T h , which is assumed to be lognormally distributed on the basis of the hazard analysis, into a 

standard normal stochastic process, ( )y τ  (Eq.(9)), the function ( )g T  (see Fig.1) and the hatched 
area in Fig.5(a) are transformed into the function ( )y τ  and the hatched area in the yτ −  coordinate 
in Fig.5(b), respectively.  
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where 

( )50ln ( )E
DS T

µ  and ( )50ln ( )E
DS T

σ  are the mean and standard deviation of 50ln( ( ; ))E
DS T h , respectively.   

Note in Eq.(6) and Fig.5(b) that the horizontal axis is transformed to log( )Tτ = . 
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Figure 5.  Schematic illustration of capacity spectrum method for standard normal stochastic process 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Capacity spectrum and demand spectrum in standard normal stochastic process 
 
Considering the fact that the correlation coefficient of two spectral displacements is a function of only 

( )log logi jT T 
 
 

−  (see Fig.3), the problem of estimating the probability that the stochastic process 

50 ( ; )E
DS T h  stays above the threshold ( )g T  in the range of ( )1 eqT t,  can be interpreted as the first 

passage problem of a stationary standard normal stochastic process crossing the threshold ( )y τ  
downward. 
 
The correlation coefficient between ( )iy τ  and ( )jy τ , ijρ , is expressed as (Der Kiureghian and Liu 
1985)  
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where 50( )iSD TV  is the c.o.v. of 50 ( ; )E

D iS T h .   
 
Fig.6 illustrates the capacity spectra of an inelastic oscillator with a bilinear backbone curve in a 
standard normal stochastic process when yC  = 0.3 and 2k  = 0 or 0.03.  It should be noted that the 

horizontal axis is expressed in a logarithmic scale.  When 2k  = 0, as 1T  becomes longer, the slope 
of ( )y τ  becomes steeper and closer to being linear.  As the slope becomes steeper, the possible 
range in which the capacity spectrum crosses ( )y τ  downward becomes narrower.  Thus, the 
response becomes less dependent on the correlation coefficient, and the EqLT that uses a UHS, which 
is now expressed by a horizontal line (see Fig.6), could provide estimates that are more accurate.  As 
the slope becomes steeper when 2k  is larger, estimates of higher accuracy are obtained.  
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When yC  = 0.5, the capacity spectrum shifts upward.  Then, the slope of the part of the capacity 
spectrum for 1T  = 0.3 or 0.5 s becomes gentler as it approaches the horizontal axis; consequently, the 
EqLT that uses a UHS becomes more sensitive to the correlation among the elastic spectral 
displacements. 
 
The accuracy of EqLT using UHS is further investigated using generic CS’s shown in Figs.7(a), (b), 
and (c) by solid lines.  The CS’s are modeled by parabolic functions expressed by the following 
equation with a  equal to 1.0 or 3.0, and 0y equal to (a) –2, (b) –1, or (c) 0.  Note that τ =0 can be 
interpreted as the natural period of an inelastic oscillator. 
 
      2

0( )y a yτ τ= ⋅ +   (8) 
 
The exceedance probability associated with the CS’s in Figs.7(a), (b), and (c) are shown in Figs.8(a), 
(b), and (c) for a  equal to 1, and in Figs.9(a), (b), and (c) for a  equal to 3, respectively.  The 
accurate estimates are also presented by solid lines in each figure.  It can be seen in these figures that 
the part of CS with gentle slope is closer to the horizontal axis (i.e. as 0y increases), exceedance 
probabilities estimated using UHS become less accurate.  Also, as the slope of CS is steeper, 
exceedance probabilities estimated using UHS become more accurate. 
 
 
 
 
 
 
 
 
 

Figure 7.  Capacity spectrum and modified capacity spectrum 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  The exceedance probability estimated in generic model ( a =1.0) 
 

 
 
 
 
 
 
 
 
 
 

Figure 9.  The exceedance probability estimated in generic model ( a =3.0) 
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4.4 Improvement of EqLT using UHS 
 
When the CS is flat, there is no chance that a UHS intersects with the CS; however, there is some 
possibility that the stochastic process could cross the CS downwards.  The similar observations can 
stand when the slope of the CS is fairly gentle; the stochastic process would crosses the CS much 
earlier that that UHS intersects the CS.  Based on such observations, one might consider increasing 
the slope depending on the degree in order to make a UHS crossing the CS a little earlier.  Here it is 
proposed to modify the CS by multiplying the following function, which is a function of the slope and 
the value 0y  in Eq.(8).   
 

      0
( )( ) 1 ,  dyh h y

d
ττ
τ

∗  = +  
 

  (9) 

 
For the CS expressed by Eq.(8), the following modified CS is obtained empirically. 
 

      
( )
( )

2
0

1 exp 4
( )

4 exp 0.4 1
a

y a y
a b

τ
τ τ

− − ⋅ ⋅
= ⋅ + +

⋅ ⋅ − ⋅ −
%   (10) 

 
The modified CS is presented in Fig.7 by dashed lines, and the exceedance probability estimated by 
the proposed method is also presented in Figs.8 and 9.  In any cases, the probabilities agree fairly 
well with the accurate estimates.  Note in Figs.7 that the larger the error of the EqLT using original 
CS and UHS, the larger the modification of CS is.  The applicability of Eqs.(9) and (10) for more 
general type of CS would be investigated further in the future. 
 
 
5 CONCLUSIONS 
 
In this study, we investigated the accuracy and applicability of the use of either a UHS or a CMS along 
with an EqLT to estimate Exceedance probability of 50 ( ; )I

D iS T h . The results can be summarized as 
follows: 
 
・ Exceedance probability of 50 ( ; )I

D iS T h can be estimated fairly accurately by an EqLT that uses a 
UHS when T1 is longer than or equal to 1.0 s.  The accuracy increases with increase in k2 and 
with decrease in Cy.   

 
・ The EqLT that uses CMS could provide fairly optimistic estimates when exceedance probability 

is 20% or less in 50 years.  This could be due to the ignorance of many other possible events of 
e.g.10% in 50 years. 

 
The accuracy of EqLT with UHS is investigated in stationary standard normal stochastic process.  It 
is shown that the part of CS with gentle slope is closer to the horizontal axis, exceedance probabilities 
estimated using UHS or CMS become less accurate, and that as the slope of CS is steeper, exceedance 
probabilities estimated using UHS become more accurate.  Based on such observations, it is proposed 
to modify the CS by multiplying a modification function.  Through numerical examples it is shown 
that the proposed method provide fairly accurate estimates for most of the cases when CS is a 
parabolic function in stationary standard normal stochastic space.  The applicability is investigated 
further in the future. 
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