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SUMMARY

Damage has to be quantified to assess the seignfarmance of buildings but, in fact, its definitics vague by
nature. The limit states associated with non-stinattdamage especially are verbal and qualitatateer than
analytical and quantitative. Therefore, it is pnope consider the fuzziness together with the ramuess. A
probabilistic model to include fuzziness in thegilily computation is formulated herein, consistavith the

time-invariant first-order second-moment relialilinethod. Such a fuzzy-random model is charactgrine
terms of moments, distribution, and percentilessdmparison with the classical reliability modehelfuzziness
causes the fragility mean value to increase at iseésmic intensity, but to decrease at highemisitg. The

fuzziness also causes the fragility dispersionetrelase in most cases. As application, the modeipiemented
to compute the fuzzy-random fragility curves of rgiructural damage to a masonry-infilled reinforcedicrete
frame. All results by the proposed model are realsten
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1. INTRODUCTION

Seismic design to current codes is based on chgdaweral limit states differing from each other in
the degree of damage. Unfortunately, a lot of uad®y is inherent in any quantification of damage,
the seismic one especially, insomuch that the fritibthc approach is necessary. In addition to the
stochastic uncertainty, or randomness, the cogngource of uncertainty has been stressed recently.
This is the so-called fuzziness, or vagueness, ingamprecision which basically arises with the use
of natural language, subjective judgement, percaptther than measurement (Zimmermann, 1991).
For instance, according to Eurocode 8 (CEN, 200dbimate limit states are those associated with
collapse or with other forms of structural failueaich might endanger the safety of people”. Apart
from randomness of the seismic action, mechanicggsties, and so on, any engineering verification
against such limit state will be affected by theziness inherent in its definition, which in faet i
linguistic, qualitative, and open to individual gement.

As the damage states are imprecise, assertion aboirtg attained them may be questionable. The
fuzzy set theory suggests abandoning the dichotoetyween opposite states (Klir and Yuan, 1995),
e.g. either collapsed or not. Indeed, it is ratidnaexpress a degree of membership in each damage
state, considered as a fuzzy set. This degree ofbmeship may range from 0 to 1 with continuity,
unlike dichotomous 0 for the safe state and 1Herfailed one. Any intermediate membership in the
damage state is not excluded. This also impliegthdual transition from each state to the opposite
one, which is fully rational when, for instancegethtructural behaviour is ductile. Moreover, any
condition may have a non-zero degree of membeighlipth the opposite states, which may be the
case when, for example, both repairing and remgldeems to be feasible.

The author recently proposed a simple fuzzy-randmodel to incorporate fuzziness into the seismic
fragility computation (Colangelo, 2012). This issiagle-parameter analytical model focused on the



membership function, consistent with the time-imaatr first-order second-moment reliability method.
The demand and capacity are considered as logneemdbm variables independent of each other.
The study is extended herein in that fragilityrisated as a random variable, its mean value baing t
membership expectation. The second moments, distiih and percentiles are also formulated, and
compared with those in the case of randomness .alyp@ication to the fragility curve of seismic
non-structural damage to a masonry-infilled reiofol-concrete frame is implemented.

2.FUZZY FRAGILITY VERSUSCLASSICAL FRAGILITY

The fuzzy-random fragility is treated within theopabilistic reliability theory (Klir and Yuan, 1995
Attaining or exceeding a damage state is considaseal fuzzily described event whose occurrence is
uncertain. The probability of such an occurrenceléfined according to Zadeh (1968), which is
convenient for engineering applications becau$e&xtending the fragility computation to fuzziness
clear and straightforward; and (ii) close-form fates of the probabilistic quantities can be deriteed
draw general conclusions, as opposed to the erapigsults from particular case studies.

Recalling that seismic fragility is the probability at least attaining a damage state conditionahe
intensity of the ground motion, the probability reege writes (Zadeh, 1968)

Pr:ﬂm(r,s)fRS (r,s)drds (2.1)

wherefrsis the joint probability density function (PDF) opacityR against that damage state and
demandS at the seismic intensity that the probability amditional on;D is the domain over which the
demand and capacity are definedjs the membership function giving the degree omtoership in
the (fuzzily described) damage state, considered aszzy set. Therefore, the probability measure
according to Zadeh is the expectation of the mestiyerfunction. Moreover, since any function of
random variables itself is a random variable, oray nmtroduce the random variabl¢ = m(R,9,
termed membership indicator, and see the fuzzyenanfdagility as its mean valyg,.

Eqn. 2.1 can be readily seen as extension of #ssiclal time-invariant reliability formulation. fact,
referring to the event of at least attaining thmdge state, there exists a lower threshold beloigtwh

it holdsm= 0, meaning no membership in the damage stateaangper threshold above which it
holdsm= 1, meaning full membership. For instance, thesestiolds may be expressed in terms of the
inter-storey drift ratio, or the strength decredd9ge membership function increases monotonicalty an
gradually in between because, as discussed allevenémbership function measures every possible,
partial degree of membership in the damage staggh®& membership function becomes steeper and
steeper, any gradual transition into the damage stnishes. The membership function degenerates
into the dichotomous characteristic function usethé classical reliability approach

0 s<r (safestate)
c(r,s) = _ (2.2)
1 s>r (failedstate)
This is illustrated in Fig. 2.1a. In such a casgn.E.1 becomes
Pr= ” o(r,8) fos (r,S)dr ds = 0+”1E'fRs (r,s)drds= ” f.o (r,s)drds 2.3)
b s>r s>r

that is classical fragility. Therefore, also thasdical fragility may be intended as the expeatatioa
function: the characteristic function rather thae membership one. Similar to the variablg one
may introduce the random varialfle= ¢(R,9, termed state indicator, and see the classiagllity as
its mean valugc, as opposed tay relevant to fuzzy fragility.
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Figure 2.1. Characteristic function (a) versus proposed mesttieifunction (b)

3. PROPOSED FUZZY-RANDOM MODEL

The proposal focuses on the membership functidgim 2.1, assumed as follows (Colangelo, 2012)

0 s<(1-p)r
E[—s—(l—y)r} A-Yr<s<r
m(rs) =42l VT , (3.1)
1—1{w r<ss<(@+)y)r
2 yr
1 @+pr=<s

The idea is to introduce quadratic increase betwieerstraight lines = (1 +y) r (Fig. 2.1b), that is,
around the discontinuity of the characteristic timt (Fig. 2.1a).y is the fuzziness parameter; the
greatery, the flatter the transition into the damage stéte, greater the fuzziness. In the author’s
knowledge, there is only one similar proposal afzfjurandom fragility model (Gu and Lu, 2005).
Relevant comparison can be found elsewhere (Cdian2@l2).

3.1. First and Second M oment

Capacity and demand are assumed to be lognormahdedendent of each other. With the proposed
membership function, Eqn. 3.1, the integrationgmE2.1 can be evaluated explicitly. One obtains

—1+—Za¢(,6’) (3-2)

whered() is the standard normal cumulative distributiandtion (CDF) and it has been introduced

a, =1 as =-a, (1_V)/2 B, = iz /02
~(1-y)/2 a,=-a, (L+y)/2 B, = B, +In(L-y)/0,,
-(+y)/2 @, =exq2o, - my,)| B =B 4N+ ),
a4=—2exp{a,ﬁz/2—,u,nz] a8=a9:_07/2 B=B:-0, 1=4..9

linz @nd o,z respectively are the logarithmic mean and standardation of the (lognormal) safety
factorZ = R / S Notice thafp; is the classical reliability index, thug = ®(-f;). In order to appraise
the effect of fuzziness, the effective reliabilindex e = -® *(uy) is introduced. Eqgn. 3.2 shows that
this index depends on: (i) the ratio of the mealues of capacity and demangs / us, (ii) their
coefficients of variation (CoVspr andds, and (iii) the fuzziness parametefFig. 3.1).
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Figure 3.1. Effective reliability index

When fuzziness is smaly € 0.05, top graphs), the effective reliability éxdis close to the classical
reliability index, as can be shown. Where the meane of capacity is greater than that of demand
(top left graph), the reliability indices decreagigh increase of any CoV, and fragility increasas,
well known. However, where the mean value of capasiless than that of demand (top right graph),
the greater any CoV, the greater the reliabilifices, the lesser the fragility. Finally, where thean
values of capacity and demand are similar (top haidgtaph), the reliability indices are slightly
sensitive to any CoV. Whichever their values may éragility value around 0.5 results. It follows
that the degree of randomness has an effect otrahd of the fragility curve. Sincez andJdr are
constant, the fragility curve rises with increageseismic intensity, that is, with increasegfand
decrease qfir / us. A greater value of any CoV causes the fragililgréase where seismic intensity is
low, but the fragility decrease where intensithiigh. A flatter curve results.

The effect of fuzziness is similar to the effectradomness. The middle and bottom graphs refer to
intermediate fuzziness € 0.50) and high fuzzinesg £ 0.95), respectively. It is apparent that where
seismic intensity is low (left graphs), the greates fuzziness, the smaller the effective religpili
index, the greater the fragility. Conversely, wheegsmic intensity is high (right graphs), the geea
the fuzziness, the greater the index, the smdilerftagility. Considering the trend of the fragilit
curve, the greater the fuzziness, the flatter tinvec However, one also notices that the effective
reliability index becomes less and less sensitivarty CoV with increase of Therefore, the greater
the fuzziness, the smaller the influence of randesan Conversely, as any CoV increases, the
effective reliability index approaches 0, similarthe classical index, whichever theralue may be.
Therefore, the greater the randomness, the sntiadlenfluence of fuzziness.



The second non-central moment of the membershipatat can be evaluated by symbolic integration
similar to that for the mean value, with the prambsembership function squared. One obtains

E(M2)=1+%§Zi¢(ﬂi) (3.3)

where it has been introduced

4 =y(y-2) le=+)(° -2y-De {,=01-py)e
ZZ:_(]-_V)4/4 57:y(y_6)e2 512:_(1"'1/)%
=AY A-)A+3)/4  {o=-31-y)e,/2 {s=-8/4
{,=2¥(3-y)e {y = (@+6y+y°)e,/2 {u=8/4

Zsz(l_y)sel {10 = 2)8; ek=exdk(ka,ﬁz/2—,umz)]

The arguments; in Eqn. 3.3 additional to those in Eqn. 3.2 are

e IBi—s_Ulnz i=101112
! lBi—Z “Ohz i =1314

Eqgns. 3.2 and 3.3 yield the standard deviatiomm@fmembership indicatoq,, = 1/E‘M 2 j—,qu . This
is related to the standard deviatimnof the state indicator. It holds

E(CZ): E[cz(r, s)] = 0+J"[12 Of s (r,S)drds = g

3.4
0c =JE(C?)- 12 = e @ c) (34)

The differenceAc = oy — ¢ is plotted in Fig. 3.2. Obviously, the greater theziness, the greatéw
(see the graphs in each column from top to bottaiheny anduc are different (left and right
graphs), local positive maxima appear where the Caké, say, 0.2. This means that with such a
degree of randomnessy is greater thanc. However, the domain over whidtw is negative results to
be much wider. In general, the membership indicestéess scattered than the state indicator. A&l th
more so whenuy and uc are equal (middle graphs). The positive maximagpear,Ac remains
negative, and it becomes as smal-@<l5 with increase of and decrease of the CoVs. In fact, such a
case is an almost deterministic one along thegsttdines = r (Fig. 2.1). The state indicator, valued
either O or 1, changes dramatically there becatigeneall) dispersion. Conversely, the membership
indicator remains around 0.5, all the more so Wwitlease of. oy is expected to be quite less than

3.2. Distribution and Per centiles

With the proposed membership function, Eqn. 3.%jdtheory on the functions of random variables
(Papoulis, 1991) yields the CDF of the membershilciator explicitly
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Figure 3.2. Difference of standard deviations of the membersinid state indicators

Contrary to the CDF of the state indicator, whistdiscrete, this is a mixed-type distribution. &ctf
there is discrete probability & being O, corresponding to the domain (1-y) r (Fig. 2.1b). There

is also discrete probability dfl being 1, corresponding to the domair (1 +v) r (Fig. 2.1b). The
former probability vanishes in the case of fullZuness { = 1). In any case, there remains the latter
probability and, most important, the continuoushbatulity associated with the transition domain
between the straight lines= (1 £y) r, which is missing with the two-valued state intlica

It is easy to invert Eqn. 3.5 in order to obtaia #tpercentile of the membership indicator

0 0< 1< ®[B+In(1-y)/0,,]
%{exp{ Umz[q"l(;T) - g1+ V} ®[5+In1-y)/0,.]< 1< 0(B)
m, = o 2
1_%{exp{ U.nz[qJ (;T) ‘:3]}‘1_ V} ®(8) < m< ®[B +In(1+p)/a,,]
1 ®[B+In(L+y)/0,,|< m<1

The percentiles yield the fragility band, thattlse interval fn,, my_,] within which the membership
indicator shall be with probability 1 2z. Any similar interval does not exist for the twalved state
indicator. Consistent with decrease in the standendation, the greater the fuzziness, the narrower
the interval, as can be readily shown.
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Figure 3.3. Probability mass (red segment) and density fungfiidue line) of the membership indicator

3.3. Mass and Density Function

Egn. 3.5 immediately gives the probability masscfiom (PMF) of the membership indicator at the
extremesx = 0 and 1, which equals, (0) and 1- Fy (1" ) respectively. The PDF of the membership
indicator over the interval [0,1] results from ayaal differentiation ofFy (x). The PMF and PDF
pertaining toy = 0.05, 0.50, and 0.95 are illustrated in Fig. 3.3

When fuzziness is smalf € 0.05), most probability is associated with tiMFAPat the extremes = 0

and 1, rather than with the PDF. In fact, the fittotsdomain between the straight lines (1 £y) r is
small. In the case of no fuzziness, the PDF woaldish. Ifur is large with respect tes (left graphs),
then the PMF at 0 is much greater than the PMF lidked, the membership indicator is expected to
be small. Ifur is small with respect tps (right graphs), the contrary holds. dt andus are equal
(middle graphs), the PMF at 0 is similar to thal aMoreover, the PDF increases, with respecteo th
cases of different mean values. Once again onethialy of being around the straight lise= r, thus

the probability of the membership indicator beimgvizeen 0 and 1 is greater. The PDF increase is also
expected with greater fuzziness, because the ti@mgiomain becomes wider. In fact, considering
intermediate fuzziness € 0.50) and high fuzzinesg € 0.95), the PMF decreases while the PDF rises
further on. If capacity is large (left graphs), tm®st noticeable increase of PDF is beside O, fout i
capacity is small (right graphs), this increasedside 1. Once again this is what is expected.

4. APPLICATION

A reinforced-concrete planar frame infilled by netrdctural masonry, typical of residential building

is considered (Fig. 4.1). The structure is desigodgurocode (CEN, 2004a; 2004b) with peak ground
acceleration (PGA) equal to 0.26 medium seismic ductility class, and rock or rdikk- ground.
Additional information can be found elsewhere (@glo, 2012). The frame members are modelled
one-to-one as linearly elastic beam elements pealvigiith rigid-plastic springs at the end, following
the Takeda model as simplified by Otani and byonit{CEB, 1996). Each infill wall is modelled as
two diagonal struts behaving according to Panakiastand Fardis (1997). The first cracking, strength
decrease, pinching, and deterioration of bothreg6 and envelope curve, is modelled. Experimental
pseudo-dynamic test results (Colangelo, 2005) weeel to calibrate this model (Colangelo, 2003).
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Figure 4.1. Masonry infilled reinforced-concrete frame
4.1. Demand Estimation

The demand is measured by the peak value of teeghdrey drift ratio, whose estimate derives from
inelastic time-history analyses of the infilled#fra model subjected to artificial, spectrum-comgatib
accelerograms. The PGA is assumed as indicatigeisimic intensity; 100 realizations at every PGA
from 0.05 to 0.95y by step 0.05 are performed. First, the mechanical propertiesaasumed to be
deterministic, thus randomness is due to the groootion only. Second, the mechanical properties of
the infill walls are assumed to be random, in ordemtroduce a greater degree of randomness. In
detail, the strength of all infill walls on eaclosty is considered as a single lognormal random
variable, its mean value and CoV being the sanmtbase at the other stories. Correlation among the
four stories is considered (Colangelo, 2012).

4.2. Definition of Fuzzy Damage States

The non-structural damage states are defined obas$is of the same experimental test results wsed t
calibrate the behaviour model (Colangelo, 2005)e Titfill damage observed during the tests is
descriptively classified into four degrees, refdrte as slight damage (SD), moderate damage (MD),
extensive damage (ED), and complete damage (CD¥.SI state is the first cracking of the infill
wall. The MD state consists of extended, wide csaickthe infill wall, before its peak strength is
reached. The ED state is attained as a few brichibi¢ splitting and falling out of their outer lay,
repairing of the infill seems to be still reasomali#inally, in the CD state, so many bricks haverbe
broken that attempting to repair the infill is ursenable; replacement is necessary.

4.3. Capacity Estimation

As soon as every damage state defined above wasede® be reached by each specimen under
pseudo-dynamic testing, the peak drift was regstelhe corresponding drift values are also taken
from any respective time history by the behaviowdsl. The parameter estimation of both capacity
and fuzziness is based on such drift values. Retawaasurements of the membership in each damage
state are derived by pairwise comparison (Saat§8r@nd treated as samples of the membership
indicator, each following a given sample of the daoh The optimum values ¢f ur, anddg, are
identified by minimizing an objective function inveng the sample mean and standard deviation of
the membership values on the one hand, and the sttigtics of the membership indicator on the
other hand (Eqn. 3.2 withs = 0 andus = drift values at attaining the damage statesjciBely, this
function is the squared difference between the &ameans plus the squared difference between the
sample standard deviations. The estimated parameliees are in Table 4.1, yielding the PDFs and
membership functions plotted in Fig. 4.2 togethihwhe drift and membership values, respectively.



Table 4.1. Estimated parameter values of the fuzziness amdbraness of capacity

Parameter SD state MD state ED state CD state
y 0.43 0.45 0.44 0.24
1R (%) 0.04 0.49 1.07 1.78
Or (%) 40.3 53.5 46.3 12.8
E_ ;: Damage state
fR v
* =Y S -
O.t X * , y
O, 002 005 g, o2 | o5 T ot 008"y, o2 s 1 3
Drift (%) Drift (%)
(a) (b)

Figure 4.2. PDFs of capacity (a) and membership functions wittmedian value (b)
4.4. Fragility Curves

Referring to the first storey, the fragility meaalwes and bands based on the first two moments are
plotted in Fig. 4.3. All in all, it is noted thaté membership indicator yields a lower, narrowerdha

as opposed to the state indicator. The lesser wedae can be shown to be related to the parameter
identification. The narrower band reflects the aeliénce between the second moments discussed in
Sec. 3.1, that is, the lesser standard deviaticause of the fuzziness. In the case of infill wallth
random properties (bottom graphs) all bands beowider. This result is consistent with the CoV of
demand being greater than that in the case ofrdetistic properties (Colangelo, 2012). Moreover, at
the same time the greater randomness of demarttldsethe effect of fuzziness, which is narrowing
the bands in terms of standard deviation (Sec. 3.1)

The fragility bands based on 5th and 25th perean{gxclusive to the membership indicator, Seq. 3.2
are plotted in Fig. 4.4. Noticeable difference frima previous bands may result, in terms of stespne
especially. In the case of infill walls with randgmnoperties (bottom graphs), once again all bands
become wider, because the dispersion of demaneéday as before. Moreover, at the same time this
greater randomness of demand belittles the effeftizainess, which is narrowing the bands in terms
of percentiles as well (Sec. 3.2).
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Figure 4.3. Classical fragility versus fuzzy fragility based the first two moments
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Figure 4.4. Fuzzy fragility based on percentiles

5. CONCLUSION

The fuzziness is inherent in the seismic limitesain that they are defined qualitatively. A simple
analytical probabilistic model has been proposeddiimate fragility taking fuzziness into account.
This model is based on a single-parameter memigefahiction, so that the first two moments of
fragility are expressed explicitly depending on theziness parameter and the distribution pararmmeter
of capacity and demand. The model is also charaetein terms of distribution and percentiles. The
fuzziness causes the mean value of fragility tociase at lower seismic intensity, but to decrease a
higher intensity, which is the same effect of thadomness. In most cases, the fuzziness causes the
fragility dispersion to decrease. The fragility gemntiles may be used to estimate the fragilityrireks.
The proposed model has been implemented referdngeismic non-structural damage to typical
building frames. The results are reasonable andueaging. The model appears to be suitable for
engineering application, provided that confidentthie parameter values is gained.
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