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SUMMARY: 

 

A methodology based on the progressive incremental dynamic analysis has been introduced in this paper to 

estimate the structural response and the corresponding annual probability of failure. The proposed methodology 

employs the genetic algorithm optimisation technique and an equivalent single degree of freedom system 

corresponding to the first mode period of a considered structure. The proposed methodology can significantly 

reduce the number of ground motion records needed for estimating the annual probability of failure. The 

numerical results indicate that the proposed method can effectively reduce the computational effort needed for 

computation of probability of failure for the first-mode dominated structures which is advantageous as the 

structure becomes larger. It has been shown that the probability of failure can be estimated within ±15% error 
with 95% confidence. The proposed method can speed up the decision-making process in the probability based 

seismic performance assessment of structures. 
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1. INTRODUCTION 

Structural analysis often involves large uncertainties, especially when the input is highly uncertain, as 
is the case of seismic loading. The probability-based methods attempt to deal with this uncertainty in 

the seismic design and assessment of structures. The performance evaluation of structures is often 

described in terms of demand and capacity, where the demand can be any structural response of 
interest (shear, moment, drift, etc.) and the capacity is the maximum structural response in which the 

structural behaviour is acceptable. The seismic demand and capacity and their distributions can be 

calculated by means of Incremental Dynamic Analysis (IDA), which is commonly used for different 
nonlinear analysis applications [Vamvatsikos and Cornell, 2002, Liao et.al, 2007, Tagawa et al., 

2008]. IDA employs several response history analyses for a given ground motion record by increasing 

the intensity measure until the collapse occurs. This process is repeated for a sufficient number of 

ground motion records to determine the median collapse capacity and the record-to-record variability. 
A comprehensive review of some analytical methods can be found in a state of the art article by 

Villaverde [2007].  

One of the most well-known methodologies for the probability assessment of structures, was 
developed for the SAC2000 project [Cornell et al., 2002]. The SAC2000 methodology provides a 

closed form solution for determining required values, but there are some shortcomings in the closed 

form solution rooted in the simplifying assumptions, e.g. a fixed value for dispersion, structural type 
limits and etc., but these can be avoided by means of the direct IDA analysis. 



One of the most challenging issues in IDA is the significant computational effort which is needed for 

the nonlinear response-history analyses. This issue even gets more complicated as the structure grows 

taller in terms of extensive computational effort. To reduce the this effort required in IDA calculation, 

different approximate methods have been introduced which can be summarized in seven categories. 
(1) Vamvatsikos and Cornell [2005, 2006] presented SPO2IDA to reduce the required time to obtain 

IDA curves; (2) Cornell and Baker [2005] introduced the epsilon-based filtration approach to select 

the ground motion records, which employs the epsilon advantages for reducing the number of ground 
motion records; (3) Dolšek and Fajfar [2005] showed that the N2 method can also be used for the 

determination of approximate summarised IDA curves; (4) Han and Chopra [2006] proposed the 

approximate IDA using Modal Pushover Analysis of the multi degree of freedom (MDOF) system and 
nonlinear dynamic analysis of corresponding single degree of freedom (SDOF) systems, which can 

consider higher mode effects but may not be reliable in estimating IDA curves in the case of irregular 

structures [Vejdani-Noghreiyan and Shooshtari,2008]; (5) Ghafory-Ashtiany et al. [2010] tried to 

classify ground motion records for different structural groups by incorporating the multivariate 
statistical analysis with the principal component analysis. They classified a wide range of SDOF 

systems into six different groups and have proposed eight ground motion records for each group to 

reliably estimate the mean structural response; (6) Azarbakht and Dolšek [2007, 2011] introduced the 
Progressive Incremental Dynamic Analysis (PIDA), which involves a precedence list of Strong 

Ground Motion Records (SGMRs) and is capable of reducing the computational efforts needed to 

obtain the summarised IDA curves (16th, 50th and 84th fractiles) with reasonable approximation for 
MDOF systems. The proposed methodology takes advantage of the analysis of a first mode equivalent 

SDOF system and optimisation concept using the Genetic Algorithm (GA). The proposed method is 

obviously limited to the first-mode dominated structures in its current form.  

In this research, an attempt has been made to modify the progressive IDA optimisation method to 

estimate PPL. The proposed method was applied to MDOF structures for a given hazard condition to 

estimate the annual probability of failure. The results are described in Section (4).  

2. METHODOLOGY 

The Maximum Inter-story Drift Ratio (MIDR) was selected as the Engineering Demand Parameter 

(EDP). The capacity (or the ultimate limit state), which is the acceptable structural behaviour limit 

(here selected as the global dynamic instability), should also be represented on the same basis as the 
demand parameter, MIDR, to make the comparison possible. This methodology uses the progressive 

IDA concept, for which a detailed step by step procedure can be found in Azarbakht and Dolšek 

[2011]. Probability of failure in IM-based approach, PPL can be computed as: 

  )().()(].[ , xdHsFxdHxSPP
aa SaSCaPL  

 
(1) 

 
where F(sa) is the fragility function at spectral acceleration (sa) and )(xdHSa  is the differential of the 

seismic hazard curve. Different studies on steel and concrete frames have shown that the lognormal 

CDF provides a good fragility model in the inelastic range of response [Hwang and Jaw, 1990, Singhal 

and Kiremedjian,1996, Song and Ellingwood,1999]. The multiplication of failure fragility curve and 

hazard derivative is referred to, herein, as the “Hazard derivative-Fragility product”. 

The original Error function introduced by Azarbakht and Dolšek [2007, 2011] is shown in Equation 

(2). In this equation, s is the number of selected ground motion subsets to estimate the fractiles, which 
is a factor of three as three fractiles are to be estimated, EDP is the engineering demand parameter of 

the simple model, IM is the intensity measure for the IDA, and IM s, f is the difference in the IM 
corresponding to the “original” and “estimated” f 

th
 summarised IDA curves. The “or” as in IMor ( f ) 

refers to original values, and “f ” refers to the f
 th

 summarized IDA curve of interest (16% , 50% etc.). 

EDPmax s, f is the maximum of the engineering demand parameters corresponding to the global 

dynamic instability of the “approximate” or “original” f 
th
 summarised IDA curve, and EDPmax,or ( f)is 

the engineering demand parameter corresponding to the capacity point of the “original” f 
th

 



summarised IDA curve. The parameters IM s, f) and EDPmax (s, f) depend on the s selected subsets 

of the ground motion records, which were used in determining the “approximate” f 
th

 summarised IDA 
curve. 
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But given Equation (1), a better estimation of fragility for an assumed hazard could lead to a better 

approximation of PPL. This additional constraint can be effectively included in the original fitness 

function by including some additional terms as shown in Equation (3) which hereafter is referred to as 
the improved error function: 
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Here, 
orIMLn )(

 
is the “original” logarithmic mean value of the collapse capacity, )()( sIMLn is 

the “estimated” logarithmic mean value of the collapse capacity based on selected SGMRs and  is 
logarithmic standard deviation considering a lognormal distribution of the collapse capacity. The final 
improved fitness function (Z) that was used in the GA can be defined as: 
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Figure 1 summarises the steps involved in the determination of the adequacy of the proposed method, 
which is investigated numerically in section (3). Steps can be described as follows: 

 

 

Figure 1. Process of the improved progressive IDA for the purpose of PPL computation. 

The Analysis of Variances (ANOVA), which can compare the central tendencies of the different 

groups of observations, was used as the statistical approach to determine the minimum number of 
required SGMRs. ANOVA has some restrictive conditions, and violating them could result in 



unreliable outcomes. Due to lack of normality and independence, Repeated Measures ANOVA (RM-

ANOVA) was chosen to be used [Davis, 2002].  

Finally, by the statistical tests for the amount of the error in PPL computation, it is proposed that six 

ground motion records out of the pre-determined precedence list can be employed for an appropriate 
estimation of the PPL.  

3. ANNUAL PROBABILITY OF FAILURE (PPL) ESTIMATION BASED ON 

IMPROVED PROGRESSIVE IDA FOR SDOF SYSTEM SET 

To study the efficiency of the proposed methodology and provide a basis for MDOF application, IDA 
analysis using the Hunt and Fill method [Vamvatsikos and Cornell, 2002] for the considered SGMRs 

database was performed on a set of SDOF systems. 

3.1. Seismic Hazard function and Strong Ground Motion Records 

In the first step, a simple source, which is capable of producing only a specific magnitude at a specific 

distance, was considered. For the purpose of sensitivity analysis, different Mw and Rrupture values were 

assumed, which are summarised along with a sample hazard curve as shown in Figure 2. The 

Campbell and Bozorgnia 2008 (CB 08) [2008] attenuation relationship has been used to determine sa. 

Considering sa, )( aS s
a

  can be computed as: ],|[)( ruptureaaaa RMsSPsS    for a desired Return 

Period (TR) and 1/TR. 

Also, a general far-field ground motion set [FEMA P695, 2009], consisting of 22 ground motion pairs 

recorded at sites located more than 10 Km from the fault rupture, was selected from [PEER, 2005] to 

calculate IDA. The SGMRs details are listed in Table 4 in Appendix A. 

3.2. SDOF systems properties  

As the second step, a set of SDOF systems consisting of 27 periods ranging from T=0.1 sec to 2 sec 

(from T= 0.1 to 1 with 0.05 increments and 1.15, 1.25, 1.35, 1.5, 1.65, 1.75, 1.85 and 2sec), six 

ductility ratios (), two damping ratios () and three strain-hardening 

stiffness ratios ). A total of 972 combinations of SDOF systems were considered. The 

P- effects and cyclic deterioration were not included in the analysis for the purpose of simplicity.  

 

Figure 2 Different parameters used in sensitivity analysis and sample hazard curve for T=0.92sec, M=7 and TR=475   

3.3. Progressive IDA for SDOF systems 

In the third step, IDA curves of SDOF systems were computed. To analyse the SDOF systems, 
assuming a fixed mass value, the system stiffness can easily be calculated with regard to the selected 



period of the system. Using ground motion properties and Ry--T equations, consistent with 

Newmark-Hall inelastic design spectra [Chopra, 2001], the yield strength (Fy), yield deformation (Dy) 
and other parameters required to perform the analyses of the SDOF systems were computed. Figure 

3(a) shows IDA curves and SDOF backbone curve for one of the SDOF systems. The probability 

density function of the collapse capacity and the corresponding fitted lognormal function are shown in 
Figure 3 (b).  

 

Figure 3.  (a) IDA curves for a sample SDOF system with T=0.95sec, =6, =0.05, =0.05 and (b) The distribution of 
collapse capacity.  

By employing the progressive IDA, the precedence list for any given system can be calculated. Having 
the precedence list of SGMRs for each SDOF system, PPL was obtained for “Full data” using all the 

records for one specific structure (PPLf) and for the “selected” number of SGMRs based on the 

precedence list (PPLr). The error in the computed PPL values was defined with respect to PPLf 

as PLfPLrPLf PPP /)(  ; therefore, a negative error value implies overestimation of PPLf. 

 

3.4. PPL computation and the respective errors 

As the fourth step, PPLf, PPLr and their respective errors were computed. Figure 4 (a) and (b) show the 

PPLf and PPLr for =0.05 and =0.07 with all other parameters fixed (six SGMRs, Rrupture=10 Km, 

Mw=6.5, =0.02 and TR=475 years). PPLf is shown using surface and PPLr with the mesh. As stated 

earlier, using a limited number of SGMRs may lead to overestimation or underestimation of PPL. The 
light regions in Figure 7 (a) and (b) imply the overestimation of PPL while the dark regions imply that a 

reduced number of SGMRs has led to an underestimation of PPL.  

Figure 4(a) and (b) show the error bar diagram for comparison of error values at 95% confidence level 

for different numbers of selected SGMRs and different fitness functions. The error bars represent the 

mean ± 1.96× (standard deviation) of the 14,580 computed error values for each number of SGMRs. It 
can be seen that at least six SGMRs were needed to be used in the improved method to keep the errors 

relatively low (less than 15%), but, the error range is relatively higher in the case of the original fitness 

function as shown in Figure 4 (a).  



 

Figure 4. Computed values of PPLf  and PPLr (a) =0.05 (b) =0.07 mesh indicates PPLr  and suface shows the PPLf;  regions 

with white colour means PPLr is overestimating the PPLf . 

3.5. Statistical analysis for determining the minimum number of SGMRs  

It is worth emphasising that, as a whole, the mean of error, using any number of SGMRs greater than 

or equal to six, reaches an appropriate value of less than 6%. However, to determine the existence of 
meaningful differences in the mean values of PPL errors using different numbers of SGMRs, these 

groups were compared using Repeated Measures ANOVA (RM-ANOVA) [Davis, 2002]. Figure 5 

shows the comparison of mean error values employing different numbers of SGMRs. According to 

this comparison, using nine SGMRs in the improved method would increase the mean value of error to 
the extent that, at 5% significance, it is considered higher than using six SGMRs.  

 

Figure 5. Comparison of mean error value at 5% significance level considering different number of SGMRs (a) Original 

fitness function (b) Improved fitness function 

4. APPLICATION OF THE PROPOSED METHOD ON MDOF STRUCTURAL 

SYSTEMS 

In this section the improved method and the original method (by using both GA and simple 

optimisation techniques [Azarbakht and Dolšek 2011]) were employed on three different MDOF 

systems, namely, a 3-storey, an 8-storey and a 12-storey structure to compare their behaviour. First 
general definitions and assumptions are presented, then, they are numerically investigated. Figure 6 

shows the steps involved to determine the PPL for the MDOF system. 



 
 

Figure 6 Steps involved in determination of PPL using progressive IDA 

4.1. General definitions 

In order to determine the PPL for MDOF systems a hazard curve based on the Probabilistic Seismic 

Hazard Analysis (PSHA) has been considered. In this hazard curve, Sa (1sec) for 50% in 50 yrs, 10% 

in 50 yrs and 2% in 50 yrs equals to [0.36, 0.59, 0.87]g respectively. The site has been located at 20 
km from an active fault on stiff soil (Vs-30=350 m/sec, NEHRP site class D). It is usually helpful to 

estimate the hazard especially in the region of interest by a power-law relationship: HSa=k0 (sa)
k
 

[Cornell et al., 2002]. Damping ratio of 5% has been assumed for analyses. 

Furthermore a Confidence Level (CL) can be computed corresponding to an allowable probability 

noted as P0 [Jalayer and Cornell, 2003]. In Equation (5), kx is the standard Gaussian variate with the 

probability x of not being exceeded and U is the dispersion measure representing the total epistemic 

uncertainty in the IM-based approach. 

Ux k

PL

k
e

P

P
e


 0  

 
(5) 

 
By solving Equation (5), kx and the corresponding CL can be computed from a normal distribution 
table. In calculation of the fragility curves, to determine the probability and the mean annual frequency 

of collapse, a dispersion of 0.34 has been considered and added to the randomness dispersion 

computed from IDA analyses to account for modeling uncertainty as suggested by Haselton [Haselton 
and Deierlein, 2007]. The error definition for CL is the same as the error defined previously for PPL 

computation. 

4.2.   3-storey rc structure 

In this section a 3-storey 3D reinforced concrete structure designed by Fardis [2002] for which a 

pseudo-dynamic experiment was performed at full scale at the ELSA Laboratory, within the European 

research project SPEAR (“Seismic performance assessment and rehabilitation of existing buildings”) 
[Negro et al., 2002] was investigated. The structure has T1=0.85 sec, and the idealised period for the 

corresponding first mode equivalent SDOF system is 0.92 sec. A more detailed explanation of the 

model and comparison of experimental and numerical results can be found in [Fajfer et al., 2006]. The 
Nonlinear Response History Analyses (NLRHA) were performed on the weak (X) direction of the 

structure.  Figure 7 shows the IDA curves, the pushover curve in the X direction and the equivalent 

SDOF backbone behaviour. The force-displacement envelope of the SDOF model was obtained by 

dividing the forces and displacements of the idealized pushover curve by a transformation factor  
[Fajfar, 2000]. 

The original progressive IDA and Improved progressive IDA along with the simple method 

[Azarbakht and Dolšek, 2011] were applied to the MDOF test structure based on the first mode 
equivalent SDOF system and using the SGMRs database to obtain the precedence list.  

Figure 8 shows that even with a small number of SGMRs, 6 out of 44, the improved progressive IDA 

can provide a good estimate of the collapse capacity distribution based on the analysis of the first 



mode equivalent SDOF system for the structure studied. Table 1 shows the comparison of obtained 

results using six SGMRs and different fitness functions.R is the dispersion measure representing 
randomness uncertainty (it is the logarithmic standard deviation of the collapse capacity). 

 

Figure 7. (a) IDA curves; (b) pushover curve in X direction and the equivalent idealized SDOF behaviour. 

 

Figure 8. The effect of number of selected SGMRs on the probability density function of collapse capacity using the 
improved fitness function for the 3-storey RC structure. 

Table 1: Comparison of obtained results using different fitness functions and six SGMRs for 3-storey RC structure 

Method EQ. IDs R ),1( colTaSLn
e


  
PPL 

Error in 

PPL 
CL%

*
 

Error in 

CL% 

Best-estimate All Data set records 0.45 0.6416 0.0104 - 1.0 - 

Original PIDA 

using GA 
22,33,30,23,17,38 0.56 0.6288 0.0148 -42.42 0.45 55.42 

Original PIDA 

using simple 

method 

22,33,30,27,13,17 0.61 0.7154 0.0125 -20.3 0.949 5.71 

Improved PIDA 

using GA 
17, 33, 22, 2, 20, 36 0.51 0.67 0.0109 -4.82 1.044 -3.71 

*P0=0.0004 corresponding to 2% in 50 yrs Hazard level           ** without considering  effects 

 



5. CONCLUSION 

An improved version of the Progressive Incremental Dynamic Analysis to estimate the annual 

probability of failure of structures has been proposed. This method offers much less computational 

effort, which is very important as the structure grows larger, and makes it possible to explicitly 
consider the randomness of the input SGMRs. It also provides a good approximation of PPL value. The 

first-mode equivalent SDOF system for a given structure obtained by the pushover analysis and the 

GA optimisation technique were utilised to accurately determine the failure fragility curve and the 
corresponding annual frequency of failure. A sensitivity analysis using results of an SDOF database 

with different variables revealed that, at least for the selected SGMRs database and within the given 

assumptions, a good approximation for the probability of failure can be obtained by using only six 

SGMRs. The 95% error bound was between +15% and -11%. Analysis of MDOF systems showed that 
this method could very effectively predict the fragility curve and the annual probability of failure of 

these structures using a limited number of SGMRs.  

APPENDIX A 

Table 2: ID numbers of different SGMRs used. 

ID 

PEER 
NGA 
Rec. # 

Event, Year Mw Rave ID 

PEER-
NGA 
Rec. # 

Event, Year Mw Rave 

1 953 Northridge, 1994 6.7 13.3 23 848 
 

 19.85 

2 1602 Duzce, Turkey, 1999 7.1 12.2 24 960 Northridge, 1994 6.7 11.9 

3 1602 
 

 12.2 25 752 Loma Prieta, 1989 6.9 22.1 

4 1787 Hector Mine, 1999 7.1 11.2 26 752 
 

 22.1 

5 1787 
 

 11.2 27 767 
 

 12.5 

6 169 Imperial Valley, 1979 6.5 22.25 28 767 
 

 12.5 

7 169 
 

 22.25 29 1633 Manjil, Iran, 1990 7.4 12.8 

8 174 
 

 13 30 1633 
 

 12.8 

9 174 
 

 13 31 721 Superstition Hills, 1987  6.5 18.35 

10 953 Northridge,1994 6.7 13.3 32 721 
 

 18.35 

11 1111 Kobe, Japan,1995 6.9 16.15 33 725 
 

 11.45 

12 1111 
 

 16.15 34 725 
 

 11.45 

13 1116 
 

 23.8 35 829 Cape Mendocino, 1992 7 11.1 

14 1116 
 

 23.8 36 829 
 

 11.1 

15 960 Northridge, 1994 6.7 11.9 37 1244 Chi-Chi, Taiwan, 1999 7.6 12.75 

16 1158 Kocaeli, Turkey, 1999 7.5 14.5 38 1244 
 

 12.75 

17 1158 
 

 14.5 39 1485 
 

 26.4 

18 1148 
 

 12.05 40 1485 
 

 26.4 

19 1148 
 

 12.05 41 68 San Fernando, 1971  6.6 24.35 

20 900 Landers, 1992 7.3 23.7 42 68 
 

 24.35 

21 900 
 

 23.7 43 125 Friuli, Italy, 1976 6.5 15.4 

22 848 
 

 19.85 44 125 
 

 15.4 
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