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SUMMARY 
For the dynamic analyses of 3-D foundation-structure systems, a viscous boundary condition based on the 
principle of virtual work was proposed by Miura F., in 1989. It has been proved to be much more effective for 
absorbing the scattered waves than the traditional viscous boundaries. However, it was based on the assumption 
of horizontal earthquake motion and the proposed bottom viscous boundary could not give a satisfied solution 
because the definition of the earthquake input with the bottom viscous boundary was not clear. Therefore, in this 
study, the analytic method proposed by Miura is modified for corresponding to 3-D earthquake response 
problems. The formulations of the motion equations of the foundation-structure system and the earthquake input 
method are presented with the bottom viscous boundary and improved lateral boundary conditions. Moreover, 
for precisely considering the effects of the displacement of the free fields, the stiffness matrices of the lateral 
boundaries are modified to correspond to both the horizontal and vertical earthquake motions. Finally, the 
validation of the modified method proposed in the study is examined by a verification analysis. 
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1. INTRODUCTION 
 
The recent strong earthquakes, such as the 2011 Tohoku Earthquake and the 1995 Hyogo-ken Nanbu 
Earthquake show the common characteristic of strong vertical motion. How to consider the effects of 
the vertical earthquake motion in the designs of structures and foundations has become one of the 
serious problems we have to face. For instance, for the earthquake resistant design or seismic 
assessment of the electric power plants, the hybrid method of the dynamic analysis for horizontal 
earthquake motion and the quasi-static analysis for vertical motion has being applied up to now. 
Recently active researches about the effects of vertical motion on the safety of the power plant 
structures have been in progress. On the other hand, the 3-D linear and nonlinear FEM analysis of 
foundation - structures has been being applied practically.  
 
In the 3-D FEM analysis of the foundation-structures, an imperative problem is how to set the 
boundary conditions of the numerical model for considering the effects of free fields. In the early 
1990's, Miura proposed a viscous boundary condition for absorbing the scattered waves that occurred 
within the foundation - structure system and the irregular shaped foundation. This method also can 
take the effects of free field motion into consideration. It has been verified to be much more effective 
than the traditional viscous boundary proposed by Lysmer in 1972. However, the study of Miura was 
based on the assumption of horizontal earthquake motion, and it was concluded that for the bottom 
boundary of the foundation, the fixed condition is somewhat better than the viscous one. In fact, the 
imperfect definition of the earthquake input with a bottom viscous boundary misled the result. 
Therefore the original method proposed by Miura was deficient for the analyses of vertical earthquake 
motion or when the bottom viscous boundary condition is necessary. Concretely, it is necessary to 
improve the original method on the following two problems. 
1) In the case that the vertical earthquake motion is predominant or the reflection of the scattered 

waves at the bottom boundary is supposed, the bottom boundary condition should have the 



function of absorbing the scattered waves and a proper formulation of the earthquake input should 
be defined concurrently. 

2) In the case of 3 directional earthquake input, the traction force acting on the lateral boundaries of 
the foundation due to the phase difference between the foundation and the free field should be 
calculated with the consideration of 3 directional earthquake motions simultaneously.  

 
For solving the problems mentioned above, the method proposed by Miura is improved by extending 
the stiffness and viscous matrices of the lateral boundaries into 3-D formation. The FEM formulation 
of the motion equations and the earthquake input definition have been given when the bottom viscous 
boundary is applied. Then, an analysis has been done for verifying the improved method. It has been 
concluded that the improved method has a sufficient function for practical engineering application. 
 
In this paper, the theoretical derivation has to be abridged because of the space limitation. If necessary, 
referring the paper of Miura is recommended.  
 
 
2. BOTTOM VISCOUS BOUNDARY AND CORRESPONDING EARTHQUAKE INPUT 
 
Here the definition of the viscous boundary condition on the foundation bottom is given.  
Based on the multiple reflection theory, the earthquake input through the foundation bottom with the 
viscous boundary condition can be expressed as the following form 
 

        uzCF BSe                                                        (2.1) 

 
where,  eF  is the earthquake load on the foundation bottom,  BSC  is the viscous boundary matrix, 

 z  and  u  respectively represent the ground earthquake velocity vector and the velocity response 
vector of the nodes on the foundation bottom. 
 
As shown in Fig. 2.1, the 2E components of the primary wave and shear wave are input beneath the 
bottom viscous boundary, symbolized as z . The bottom viscous boundary should have double 
functions. It should let the upward transmitting wave (E) pass through it, and simultaneously absorb 
the downward transmitting wave (F). With the same theoretic derivation as Miura did, the 
matrix  BSC of a rectangular element can be expressed as the following form 
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where  is the density of the foundation, l  and d  are the length and width of the element of the 

bottom boundary respectively as shown in Fig.2.2. sV  and pV  are the velocities of shear wave and 

primary wave respectively. 
 
For the numerical model with bottom viscous boundary, the earthquake load acting on the bottom 
surface is defined by Eqn. 2.1, and the motion equation of the foundation-structure system can be 
expressed as the following form 
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where  

      KCM ,, , in order, are the mass matrix, damping matrix and stiffness matrix.  

  u , u  and  u  are the nodal displacement, velocity and acceleration vectors respectively.  

  iC   RLBAFRBSi ,,,,  is the viscous boundary matrix, which is aimed at absorbing the 

energy of the scattered waves in the foundation. The subscripts RLBAFRBS ,,,,  indicate the 
boundary position shown in Fig. 2.2.  

  z  is the velocity vector of the ground earthquake motion (2E component) .  

  iG   RLBAFRi ,,,  is the stiffness matrix, which is used for calculating the traction force 

acting on the lateral boundaries due to the displacement of the free fields.  
  icG   RLBAFRi ,,,  is the damping matrix, which is directly proportionate to the  iG  and 

is used for calculating the traction force acting on the lateral boundaries due to the velocity 
difference between the foundation and the free fields.  

    if
i

f uu ,  and  ifu  RLBAFRi ,,,  are the displacement, velocity and acceleration vectors 

of the free fields. 
 
However, for the model with fixed bottom boundary, the matrix  BSC  in Eqn. 2.2 becomes 

unnecessary, and the first term of the right side becomes  
 
           zM                                                              
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where  z  is the acceleration vector of the ground earthquake motion (E+F component). 
 
The bottom boundary condition of the free fields should be consistent with that of the foundation. For 
the case with bottom viscous boundary, the motion equation of the free fields should be  
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where  fK  is the stiffness matrix of the free field. It can be achieved by superposition of the 
elemental matrices. Corresponding to the excitation direction, the elemental matrix has different 
contents as shown in Eqn. 2.4. 
 

 






































excitationvertical
H

excitationhorizontal
H

K
ef

11

112

11

11





                            (2.4) 

 
where   is the shear elastic modulus of the free field material.  

        212  , and   is the Poisson ratio.  
      H is the thickness of the layer element of the free field. 

While,  fM  in Eqn. 2.3 is the mass matrix of the free field, and  

       fC  is the damping matrix, which is proportional to  fK  and  fM .  

       fz  is the velocity vector of the ground motion, and  

       BS
fC  is the matrix of the bottom viscous boundary of the free fields, which is defined by 

corresponding to the excitation direction as Eqn. 2.5 does. 
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When the bottom boundary of the free field is fixed, the right side of Eqn. 2.3 becomes  
 

            ff zM   
 

where  fz  is the acceleration vector of the ground earthquake motion. 
 
 
3. 3-D EXTENSION OF THE STIFFNESS MATRICES OF THE LATERAL BOUNDARIES 
CONSIDERING THE EFFECT OF THE VERTICAL MOTION 
 
Around the foundation of the numerical model, the lateral viscous boundaries are set, which consist of 
3-D springs and dampers as shown in Fig.3.1. It is supposed that 3 directional ground motions are 
input.  
 
The artificial lateral boundary should have the function of not only to absorb the energy of the 
scattered waves occurred in the system but also to let the energy of the free field motion flow into the 
foundation simultaneously. The effect of the free fields is expressed as traction force as shown in 
Fig.3.2. The inflow energy can be classified into two types. One is due to the displacement of the free  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

field, expressed as  f
df , and the other is due to the velocity difference between the foundation and 

the free fields, which is expressed as  f
vf . Therefore, the traction force acting on the lateral 

boundary surface can be defined as 
 

     f
v

f
d

f fff                                                     (3.1) 

 

where,  ff , as shown in Fig.3.2, consist of the nodal forces 
 

   Tzyxxzyx
f tttttttf 4442111                             (3.2) 

 
In the original paper of Miura, the method for calculating the traction force acting on the lateral 
boundaries in the case of single exciting direction was given. Here, the method is improved to 
correspond to the 3 directional vibration problems. The first term of Eqn. 3.1 is described as a 3 - 
dimensional problem. 
 
With the same derivation method as Miura did, the traction forces acting on the lateral boundaries due 
to the displacement of the free field can be expressed as  
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f
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For example, corresponding to the right side boundary R as shown in the Fig.3.2, in the case of three 

directional deformation problems, the displacement vector of the connecting free field  fu  is 
defined as  
 

   Tf wvuuwvuu 4442111                           (3.4) 
 
On the other hand, the elemental stiffness matrix of the right side boundary is defined as 
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where,  
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For the left side boundary L, the elemental stiffness matrix can be achieved according to the position 
relationship with the right side boundary. 
 

   eRe
L GG                                                       (3.6) 

 
In the same way, the elemental stiffness matrix of the front side boundary FR can be defined as 
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And the elemental stiffness matrix of the back side boundary can be achieved from the Eqn. 3.8. 
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e
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The equations from Eqn. 3.5 to Eqn. 3.8 are the ones that belong to the boundary elements. For each 
boundary FR, BA, L, R, the total stiffness matrices of the boundaries can be achieved by the 
combination of the above elemental stiffness matrices. 
 
 
4. VERIFICATION OF THE IMPROVED VISCOUS BOUNDARY CONDITION 
 
A laterally layered ground is analyzed to verify the function of the viscous boundary conditions 
improved in the study. For verification of the lateral boundaries, the 3-D analysis of a program called 
"UNIVERSE", which has the function of the improved viscous boundary, is compared with that of the 
1-D program "SHAKE". For three dimensional analyses, a proper set of boundary conditions should 
be that which has the function of not only absorbing the internal scattered waves but also transmitting 
the energy resulted from the motion of the free field into the foundation. It is assumed that for a 
dynamic analysis of the layered ground, if the boundary conditions are properly set, the results gotten 
from the 3-D analysis with limited region should be consistent with those of the 1-D analysis of 
SHAKE. For verification of the bottom boundary, the horizontal and vertical earthquake motions are 
input simultaneously, and the responses of the foundation are compared with those of the free fields 
around the foundation.  
 
4.1. Verification Conditions 
 
The verification analyses are carried out with the model shown in Fig.4.1.          
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The material properties of both the 1-D model and the 3-D model are exactly the same. It is supposed 
to be linear elastic material and the properties shown in Table 4.1 are used. 
 
Table 4.1 Material Properties of the Model 

Elastic Modulus(N/mm2) Density (g/cm3) Poisson Ratio Damping Coefficient 
20000.00 2.60 0.30 0.05 

 
The input waves beneath the bottom viscous boundary are shown in Fig.4.2, which are the earthquake 
records at a dam site during the Hyogo-ken Nanbu earthquake in 1995.  
 
4.2. Analytic Results 
 
4.2.1. Function of lateral boundary 
Fig.4.3 shows the distribution of the maximum acceleration response. It is clear that the artificial 
lateral boundary has no effect on the acceleration response of the model. In other words, the lateral 
boundary condition acted perfectly in the analysis. It can be also confirmed by Fig.4.4, which shows 
the acceleration histories of the typical points and the maximum distribution in depth.  
 
Table 4.2 compares the maximum acceleration response of the program UNIVERSE and SHAKE. The 
maximum relative error is 2.96%, which is assumed to be due to the difference between the FEM 
solution and the theoretic solution. Fig.4.5 shows the acceleration response histories and the Fourier 
spectrums achieved by the two programs.  
 
From these results it can be identified that the 3-dimentional analysis with the artificial boundary 
conditions gives almost the same results of the 1-dimensinal analysis. This indicates that the boundary 
conditions proposed in the study act quite well in the 3-dimentional analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Maximum acceleration 

Figure 4.4 Acceleration response 
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Table 4.2 Comparison of the Maximum Acceleration  
Between UNIVERSE and SHAKE  

Position 
UNIVERSE 
(gal) 

SHAKE 
(gal) 

Relative 
Error (%)

Centre of 
the surface 

132 135 1.92 

Centre of  
the model 

71 73 2.96 

Centre of  
the bottom 

86 88 2.48 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.2. Function of bottom boundary 
With the same analytic conditions mentioned in the section 4.1, but the horizontal and vertical 
earthquake motions are inputted simultaneously from the surface under the bottom viscous boundary. 
The displacement responses are examined, although the acceleration, velocity, stress responses etc. are 
also output. It was thought that if the bottom viscous boundary is properly set, the responses of the 
ground should be consistent with those of the free field around the ground. 
 
Fig.4.6 shows the displacement responses of the specified positions and those of the free field around 
the ground. It is clear that the motions of the ground and the free field are completely consistent in 
both horizontal and vertical directions. It means that both the bottom and lateral boundary conditions 
functioned properly. 
 
 
5. CONCLUSION 
 
In this study the viscous boundary condition based on the principle of virtual work has been improved 
for considering the effects of vertical earthquake motion.  
 
The FEM formulation of the motion equation of the foundation - structure system, when the bottom 
viscous boundary is applied, has been presented, and the earthquake input formation is also given. The 
stiffness matrix for calculating the traction acting on the lateral boundary of the foundation due to the 
free field motion is modified for corresponding to the three dimensional earthquake motions. 
Therefore, the energy due to the free field motion can flow into the foundation naturally. Compared 
with the original proposal given by Miura, the earthquake responses can be achieved with higher 
precision even when the bottom viscous boundary condition is used. With the method proposed in the 
study the scattered waves, especially the reflection in the vertical direction at the foundation bottom 
can be averted and an accurate solution can be expected. 
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Figure 4.5 Comparison of acceleration response history and Fourier spectrums 
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subject to the horizontal and vertical earthquake motion simultaneously 

(a) Horizontal (b) Vertical 

A
B

Free Field


