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Summary:  
Reinforced concrete (RC) wall-type structures are crucial to the safety and serviceability of buildings subject to 
earthquakes. The shear capacity of elements in walls depends strongly on the softening of concrete struts in the 
principal compression direction due to the principal tension in the perpendicular direction. By studying the shear 
behavior of isolated membrane elements, this softening phenomenon has been clarified in the Cyclic Softened 
Membrane Model. However, they can’t be used to predict the three dimensional behavior of structures. In the present 
paper, the softened shell model is first formulated and then implemented in a finite element program which is based 
on the framework of OpenSEES. The accuracy of the modeling technique is validated by comparing simulated 
responses with experimental data from a framed wall subjected to shear and a wall subjected to torsion. 
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1.INTRODUCTION 
 
Reinforced concrete (RC) thin walls are crucial to the safety and serviceability of structures subjected to 
shear. The shear capacities of elements in walls depend strongly on the softening of concrete struts in the 
principal compression direction due to the principal tension in the perpendicular direction. The past three 
decades have seen a rapid development of knowledge in shear of RC structures. Various rational models 
have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles 
of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic 
Softened Membrane Model (CSMM) is one of such rational models developed at the University of 
Houston (UH), which is being efficiently used to predict the behavior of RC structures critical in shear. 
CSMM for RC has already been implemented into an object-oriented software framework called 
OpenSEES (McKenna et al. 2000) to develop a finite element program called Simulation of Concrete 
Structures (SCS) (Mo et al. 2008; Hsu and Mo 2010).  
 
Since each node of the membrane element has only two degree of freedoms in plane, that means it can 
only provide the in-plane stiffness, the CSMM cannot be used to simulate the three dimensional behavior 
of structures. The CSMM is integrated with plane stress element (two degree of freedom per node), so it 
also meets a difficult coupling with edge beam because beam elements have six degree of freedom per 
node (Zienkiewicz and Taylor 2005). The introduction of shell element is the naturally choice to deal with 
this problem. Hence, a Softened Shell Model (SSM) is proposed in this paper. This model can predict in-
plane and out-of-plane behavior, including bending, shear and even torsion, of RC wall-type structures. 
Moreover, the proposed model is able to predict the overall load-deflection behavior of RC structures. 
This work includes two main parts: 
 
In the first part, the developed theory of SSM and its corresponding shell element will be presented. As 
well known, a shell element generally can be considered as the assembly of membrane element and plate 
element. For the membrane part, the CSMM is extended by considering the drilling degree of freedom. 



For the plate part, the first order shear deformation theory is adopted to consider the out-of-plane shear 
and bending deformation. A four-node shell element with six degree of freedom per node is then obtained. 
 
The second part of this work involves the development of computer programs for nonlinear finite element 
analysis of RC wall-type structures. Constitutive laws of reinforced concrete, developed through previous 
research at UH have been added into SCS. Based on the SSM, a new module for RC shell section has been 
created. This new material module has been integrated with the existing material modules in OpenSEES. 
The computer program thus developed has been used for predicting the behavior of RC framed shear walls 
tested under reversed cyclic loading at UH (Gao 1999). Finally, the developed computer program has been 
applied to analyze the seismic behavior of RC wall under torsion tested at Hong Kong Polytechnic 
University (Peng and Wong 2011). 
 
 
2.FORMULATION OF SSM 
 
In general, there are three kinds of shell elements: curved shell element, isoparametric shell element and 
flat shell element. For many practical purposes the flat element approximation gives adequate accuracy 
and also permits an easy coupling with edge beam and rib members, a facility sometimes not present in a 
curved element formulation (Zienkiewicz and Taylor 2005). According to the properties of engineering 
structures, the flat shell element is also the most widely applied to simulate flat specimens such as panels, 
floor slabs and shear walls. For these reasons, the flat shell element will be used here to analyze RC wall-
type structures. Ignoring the interaction of in plane and out plane response, shell element generally can be 
considered as the assembly of membrane element and plate element. 
 
2.1 Assumption of shell element 
 
The general assumptions of shell element are: (a) The special form of domain   : 

   3 2( , , ) such that 0.5 ,0.5 & ( , )x y z R z h h x y A R        (1) 

where h is the thickness and A is the mid-surface; (b) The plane stress hypothesis:  0z  ;  (c) The 
Reissner-Mindlin assumption: a plane section remains a plane before and after deformation with allowing 
the cross-section to be non-perpendicular to the mid-surface. The last assumption allows that the three 
dimensional displacement fields ( , , )u v w  in the x, y and z directions are expressed as (Maekawa et al. 
2003; Reddy 2004) 

 0 0 0( , , ) ( , ) , ( , , ) ( , ) , ( , , ) ( , )x yu x y z u x y z v x y z v x y z w x y z w x y       (2) 

where 0 0 0( , , )u v w  denotes the displacements of a point on the mid-surface ( 0z  ). x  and y are the 

rotations of a transverse normal about the y and x axes, respectively. If x  and y  denote the rotations 

about the x and y axes, respectively, that follow the right-hand rule, then x y   and y x   . The shell 

element has six degrees of freedom per node: three translation 0 0 0( , , )u v w , two rotations x  and y , and 

one more degree of freedom, rotation about the z-axis, which is known as the “drilling degree of freedom” 

z  (Hughes and Brezzi 1989). Therefore the displacement field of the element can be express as 

 0 0 0[ , , , , , ]x y zu v w   d  (3) 

 
2.2 Generalized strains 
 
We don’t need to calculate z  because / 0z w z      according to Eq.(2). Other strains can be computed 
by differentiating the displacement based on the following relationship  
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Substituting Eq.(2) into Eq.(4), we have 
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where  ,x y   and xy  are the mid-surface membrane strains and x , y  and xy  are the curvatures 
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that indicates that we have eight general strains: three membrane strains ( , andx y xy   ), three curvatures 

( , andx y xy   ) and two transverse shear strains ( andxz yz  ). They are related to eight stress resultants, 

as described in the next section and we will find these relationships in section 2.4. 
 
2.3 Stress resultants 
 
The stress resultants can be divided into the membrane stress resultants (N), the bending moments (M) and 
the transverse shear force (Q) as shown in Fig. 1, which can be computed by integrating the stress over the 
thickness of the element as 

(a) Membrane 
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(b) Bending 
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(c) Transverse shear 
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,

h h
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 
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where 5 / 6sk   or 2 /12  is the shear correction factor (Crisfield 1996). As shown in Eqs. (7) and (8), 

yx xyN N  and yx xyM M  because xy yx  . Therefore, there are only eight independent stress resultants.  

 
2.4 Constitutive relationships in SSM 
 
Ignoring the interaction of in plane and out plane response, a shell element generally can be considered as 
the assembly of a membrane element and a Reissner-Mindlin plate element. The basic principle is 
demonstrated in Fig. 1. Both bending and transverse shear behaviors are included in the plate element. The 
softened membrane element have been developed at UH. Logically as a next step, we will develop the 
SSM based on the CSMM used in the membrane element. 
 
2.4.1 Secant form 
The constitutive relationship between stress resultants and general strains include two parts: in-plane and 
out-of-plane relationships. 

 
(a) In-plane forces and bending moments 
We can obtain the in-plane membrane stresses ( , , )T

m x y xy  σ from CSMM as follows: 
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or in matrix form as m σ 0 zD ε  where z z  ε ε κ , ( , , )T
x y xy  ε  and ( , , )T

x y xy  κ . The 

principal stress directions of the applied stresses have an angle 1  with respect to the x-axis. The ‘i-th’ 



group of rebars are located in the direction with an angle si  to the x-axis. The in-plane material 
constitutive matrix for reinforced concrete is formulated as (Zhong 2005) 

          0 1 1 1 1
ˆ

c si si si
i

                D T D V T T D T V T  (11) 

where 1 2 12( , , )c c c
c diag E E GD and ( , 0, 0)si si sidiag ED  is the uniaxial constitutive matrix of concrete 

and steel, respectively. The shear modulus 12 1 2 1 2( ) / ( )c c cG       . V is a matrix, which converts the 
biaxial strains into uniaxial strains using the Hsu/Zhu ratios. T is the transformation matrix between 
different coordinates. The detail information about this formula and the uniaxial constitutive laws of 
concrete and steel can be found in (Zhong 2005; Hsu and Mo 2010).  
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Figure 1. Stress resultants, degree of freedom and the formulation of shell element 

 

Note that the in-plane constitutive matrix 0D  is slightly different from 0D̂  because we use the strain xy  

instead of 0.5 xy  and 0 0
ˆ D D Λ  where Λ = diag(1,1, 0.5).  For a nonlinear material, 0D  is a function of 

zε , which is equal to z ε κ , so 0D  is a function of z. A numerical integration should be adopted to get 

the relationship between stress resultant and strain. To do so, the shell is divided into several layers along 
its depth. Assume the mid-plane and thickness of the i-th layer is iz and it , respectively. The two-
dimensional in-plane constitutive law Eq. (10) is applied at the mid-plane of each layer. One can easily get  
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where ( , , )T
x y xyN N NN , ( , , )T

x y xyM M MM , zi iz  ε ε κ  and n is the number of layers. Precisely 

the integrals of any function ( )f z  defined along the depth can be numerically evaluated using the Gauss-
Lobatto quadrature formulas 
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where n denotes the number of Gauss-Lobatto quadrature points, i  denotes the Gauss-Lobatto point 

coordinates, and iw  denotes the corresponding Gauss-Lobatto weights (Reddy 2004). Therefore, the stress 
resultants are 
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(b) Out-of-plane shear forces 
The relationships used for calculating the transverse shear stress are xz xz xzG   and yz yz yzG  . It is 

assumed that the contribution of shear resistance by shear reinforcement is not explicitly considered and 
the relationship between transverse shear forces ( ,x yQ Q ) and shear strains ( ,xz yz  ) is linear, i.e.,

0xz yzG G G  . The out-of-plane shear modulus 0G  is assumed equal to the uncracked concrete shear 

modulus given as 0 0 / 2(1 )G E   where 0E  is the elastic modulus and   is the Poisson’s ratio 
(Maekawa et al. 2003). From Eq. (9), we have  
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where xzG  and yzG  are the shear moduli. Finally, the constitutive relationship and the 8 8  secant 

material matrix D  for the SSM element are derived as 
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where  i is t  or 0.5 ihw , ( , )T
x yQ QQ  and ( , )T

xz yz γ . 

 
2.4.2 Tangent form 
The tangent material constitutive matrix D  is defined as 
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Because /zi  ε ε I  and /zi iz   ε κ I , the tangent material matrix is obtained easily by applying the 

chain of derivation principle to Eq.(17). The non-zero elements of matrix D  are obtained as follows: 
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where  0 0( ) ( ) /zi zi zi zi  D ε D ε ε ε  is the in-plane tangent constitutive matrix of the i-th layer. The details 

of the derivation of the in-plane tangent material constitutive matrix 0 0
ˆ D D Λ  for membrane elements 

can be found in (Zhong 2005) and 
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3. IMPLEMENTATION OF SSM INTO OPENSEES 
 
The Open System for Earthquake Engineering Simulation (OpenSEES) is an object-oriented software 
framework for simulating the seismic response of structural and geotechnical systems using finite element 
method (McKenna et al. 2000; Scott et al. 2008). OpenSEES has been developed in the Pacific 
Earthquake Engineering Center (PEER). It is a communication mechanism for exchanging and building 
upon research accomplishments, and has the potential for a community code and computational platform 
for earthquake engineering because it is an open source.  
 
Constitutive laws of reinforced concrete, developed through previous research at UH have been added into 
SCS. In order to implement the SSM into OpenSEES, a new module named “RCShell” for RC shell 
section has been created. A new shell element has also been developed with considering the drilling 
degree of freedom based on the theory developed by Cook et al. (2002). As shown in Fig. 2, the new 
material module and element have been integrated with the existing material modules in OpenSEES. 
SteelZ01 and ConcreteZ01 are the uniaxial material modules for concrete and rebar, respectively. The 
RCPlaneStress is a nD material module to represent the Softened Membrane Model. The uniaxial 
materials of steelZ01 and concreteZ01 are related with material RCPlaneStress to determine the material 
stiffness matrix of membrane reinforced concrete in RCPlaneStress. The nD material RCPlaneStress 
supplies the in-plane stiffness matrix of each layer in RCShell. Using the OpenSEES as the finite element 
framework, the nonlinear finite element program Simulation of Concrete Structures (SCS) was extended 
for the simulation of three dimensional reinforced concrete structures subjected to monotonic and reversed 
cyclic loading. A standard analysis procedure is presented in Fig. 3. The RCShell section gives a 
connection between a nD material (i.e., RCPlaneStress in CSMM) and a shell element. 
 

 
 

Figure 2. Implementation of SSM into OpenSEES 
 
 
4. VALIDATION 
 
4.1 Example 1: framed wall subjected to cyclic shear  
 
Specimen FSW-13 tested by Gao (1999) was used to validate the SSM. The specimen is a 1/3-scale 
framed shear wall, subjected to a constant axial load at the top of each column and a reversed cyclic load 
at the top beam. The wall dimensions were 914.4 mm by 914.4 mm with a thickness of 76.2 mm. The 



cross-section of the boundary columns was 152.4 mm2. The detail of reinforcement of the specimen is also 
shown in Table 1 and Fig. 4.  
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Figure 3. Modeling hierarchy for nonlinear RC structural analysis 
 
Table 1. Dimension and properties of Specimen FSW-13 (Gao 1999) 

(MPa)cf   

Column & Beam Wall Panel 
 

Vertical Load 
Hoop steel 

(mm) 
Longl. 
steel 

Longl. 
steel (%) 

Panel steel 
(mm) 

Panel steel 
(%) 

N (kN) 
Axial load 

ratio 
56.91 #2@63.5 6#4 3.33 W2@152.4 0.23  89 0.07 

 



 
 

Figure 4. Dimensions and steel arrangement of specimen FSW-13 (Gao 1999) 
 

The bottom left and right corners of the specimen were supported by a hinge and a roller, respectively. 
Finite element analyses were conducted on the specimen. The specimen was modeled by the finite 
element mesh, as shown in Fig. 5. The wall panel was defined by 25 ShellX elements. Each element was 
defined with a RCShell section that was developed based on the SSM. The section was discretized into 
five layers or five integration points. The material of each layer or point is a 2D material RCPlaneStress, 
which is composed of two uniaxial materials ConcreteZ01 and SteelZ01 (Zhong 2005). The nonlinear 
behavior of the element derives finally from the nonlinear stress-strain relation of the uniaxial materials. 
The boundary columns and beams are modeled as NonlinearBeamColumn elements, which are the 
existing element types in OpenSEES. Each of the beams and columns were divided into five elements. As 
shown in Fig. 5, the element was discretized into longitudinal steel, unconfined concrete and confined 
concrete fibers such that the section force-deformation relation is derived by integration of the stress-strain 
relation of the fibers. The stress and strain of the confined concrete was determined based on the modified 
Kent and Park model developed by Scott et al. (1982).  
 

                  
 

Figure 5. Finite element modeling of specimen FSW-13: load, mesh and materials 
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Figure 6. Shear force-drift displacement 

 
The axial loads acting on the columns were applied as vertical nodal forces, which remain constant in the 
analysis. Reversed cyclic horizontal loads were then applied by a predetermined displacement control 
scheme. The nodal displacements and corresponding horizontal forces were recorded at each converged 
displacement step, and the stress and strain of each of the elements were also monitored. The analytical 
results of the shear force-drift relationships of the framed shear wall are illustrated by the solid hysteretic 
loops in Fig. 6. These dashed loops are compared to the dotted loops, representing the experimental results. 
It can be seen that excellent agreements were obtained for the primary backbone curves, including the 
initial stiffness, the yield point, the ultimate strength, and the failure state in the descending branch. 
 
4.2 Example 2: RC wall subjected to monotonic pure torsion 
 
Eight half-scaled RC walls, designed with the same thickness but different lengths and reinforcement 
ratios, were tested under monotonic torsion at Hong Kong Polytechnic University (Peng and Wong 2011). 
Although all walls were simulated using SSM, we only show the results of Specimen SW10-3 because the 
results of others are similar. Specimen SW10-3 was modeled with 5 6  shell elements. The bottom of the 
wall is fixed and the top is modeled by a rigid beam element to simulate the top slab used in the test. As 
shown in Fig. 7, the cracking torque predicted by SSM agrees well with that of test, but the maximum 
torque is larger than the experimental result by about 23.5%. Since the torsional (out-of-plane shear) effect 
on concrete softening is not considered in the model, the maximum torque predicted is higher than the 
experimental result. 
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Figure 7. Comparison of torque-twist curves 
 
 



5. CONCLUSIONS AND FUTURE WORKS 
 
The theory of SSM for RC shell section was developed and implemented into OpenSEES to simulate the 
three-dimensional behavior of RC wall type structures under multi-direction loads. A new shell element 
with six degree of freedoms per node was also developed. It is very easy to connect with beam element 
because the two type of elements can share the same node. Two experimental walls are simulated to 
validate the model. One is under in-plane shear and the other is subjected to torsion. The results show that 
the SSM can predict the in-plane shear behavior very well and can also predict the cracking torque. 
However, the model should be refined to get a better prediction in the torque and twist angle relationship 
by taking into account a high order shell theory and the torsional effect on concrete softening. 
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