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Summary:

Guided by the recent advances in solid-state research in periodic materials, a new type of layered periodic
foundation consisting of concrete and rubber layers is proposed. The distinct feature of this new foundation is its
frequency bands; as a result, it cannot transmit motions falling in the frequency band gap, so the foundation itself
is a seismic isolator. Using the theory of elastodynamics and the Bloch-Floquet theorem, the mechanism of band
gaps in periodic composites is explained and a finite element model is built to show the isolation characteristic of
a finite dimensional periodic foundation. Based on these analytical results, moreover, a scaled model frame and a
periodic foundation were fabricated and shake table tests of the frame on the periodic foundation were performed.
Strong vibration attenuation is found when the exciting frequency falls into the band gaps.
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1.INTRODUCTION

The design of buildings and other structures capable of withstanding earthquake events has been the
research focus by engineers for many decades. A commonly accepted method for the design of
earthquake resistant buildings and structures, however, has not been developed up to the present time.
Fortunately, the traditional design methods, based only on the static structural strength with impact
factors to account for dynamic loads, have been reviewed and gradually replaced by newer
methodologies over the last three decades. Concepts of structural element ductility and the importance
of shear resistance have contributed to the ability to effectively design structural elements and systems
that are resistant to dynamic loadings associated with earthquakes. The use of passive and active
systems has been proposed and implemented in an attempt to maximize the ability of the structure to
resist and survive an earthquake event. Recent design methods have also been proposed, in which
seismic base isolation is utilized as a method to resist seismic loadings. One strategy implemented to
date has been the addition of a base isolation system (usually a layer with low horizontal stiffness or
sliding elements) between the structure and the base (foundation) of the structure. This system
attempts to modify the fundamental frequency of the structure, thereby decreasing its acceleration
response. The strategy of adding an isolation system between the structure and the foundation will
typically result in a structure with a much lower fundamental frequency than the original un-isolated,
fixed-base frequency of the structure (Naeim and Kelly 1999; Zhou et al. 2006; Sayani and Ryan
2009). According to the acceleration design spectrum, a change in the fundamental frequency of a
structure may reduce the acceleration response significantly, thereby enhancing the overall ability of
the structure to withstand and survive the earthquake event. One significant drawback of a traditional
base isolation system, however, is that the structure will usually have very large residual horizontal
displacements relative to the foundation after the earthquake event. To reduce these residual
displacements, supplementary dampers are often prescribed.

Recently, investigations in the field of solid-state physics have shown that certain crystal arrangements
may be utilized to manipulate the energy or patterns of acoustic (mechanical) wave energy (Liu et al.
2000; Kittel 2005; Thomas et al. 2006; Xiao et al. 2008). These materials, termed phononic crystals,



can be designed to produce specific gaps in the frequency response of the material. These gaps are
termed “frequency band gaps”. (The term “phononic crystal” will be replaced in this paper by the term
“periodic material” for the purpose of clarity). When the frequency of a wave falls within the range of
the frequency band gap of a periodic material, the wave, and hence its energy, cannot propagate
through the periodic material. Fig. 1 illustrates wave propagation in both periodic and non-periodic
material from a single source (Torres and Montero de Espinosa 2004). The source generated wave
(and energy) cannot propagate in the periodic material on the left side of the figure when the
frequencies of the wave fall within the frequency band gap of the material. The source generated wave
(and energy) can, however, propagate in the homogeneous, non-periodic material on the right side of
the figure since the homogeneous material possess no frequency band gap.
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Figure 1. Wave Propagation in Periodic and Non-periodic materials (Torres and Montero de Espinosa 2004)

Guided by the recent advances in solid-state research and the concept of frequency band gaps in
periodic materials, Shi and his co-workers utilize this periodic material as a new and innovative means
in the seismic base isolator to mitigate the potential damage to advanced structures (Xiang and Shi
2009; Jia and Shi 2010; Xiang et al. 2010; Bao et al. 2012; Huang and Shi 2012). With this periodic
material, the pattern of the earthquake event energy will be completely obstructed or changed when it
reaches the periodic foundation of the structural system. This will result in the total isolation of the
foundation from the earthquake wave energy because no energy will be passing through it. This total
isolation will be of special significance to structures that house equipment that are highly sensitive to
vibration such as research laboratories, medical facilities with sensitive imaging equipment, or
manufacturing facilities specializing in the fabrication of electronic components. Further, the full
isolation of emergency-critical structures such as bridges, facilities housing emergency response units
or equipment, and power generation or distribution structures will result in better earthquake
emergency response; consequently, there will be fewer compromises to the entire emergency response
system.

Three types of periodic foundation systems are presented in Fig. 2. The diagram on the right in the
figure presents a view of a section of the idealized foundation, including the overall constituents that
impart the periodic nature to the foundation. Specifically, shown in Fig. 2b is the one-dimensional (1D)
period foundation system fabricated periodically with two different materials, such as rubber and
reinforced concrete. Shown in Fig. 2¢ is the two-dimensional (2D) periodic foundation consisting of a
concrete matrix with multi-unit composite cylinders embedded periodically. In the case of three-
dimensional (3D) periodic foundation system, as shown in Fig. 2d, a concrete matrix is loaded with
composite balls arranged periodically in three directions.

The mechanism of band gaps in 2D or 3D periodic foundations is similar to that of 1D case. In this
work, we will only take the one dimensional layered periodic foundation as an example to demonstrate
how it works. Firstly, based on the theory of elastodynamics, the band gaps in the periodic foundations
were analyzed by employing the Bloch-Floquet theorem (Kittel 2005). Subsequently, a parametric
study was conducted to achieve a frequency band gap below 20Hz. Finally, we specialize the above
concepts and results to a steel frame on the periodic foundation. The frame was subjected to seismic



loading on a shaking table to simulate earthquake motion in three axes. The dynamic response of the
frame shows that vibration can be attenuated significantly. If this idea is proved to be practical for civil
structures, the impact on the economic savings and safety is enormous.
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Figure 2. Schematic diagram of periodic foundations: (a) Periodic foundation with upper structure; (b) 1D
layered periodic foundation; (c) 2D periodic foundation; (d) 3D periodic foundation.

2. THEORY AND ANALYTICAL RESULTS

Consider a periodic composite foundation of alternating layers of two isotropic materials arranged as
shown in Fig. 3a.
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Figure 3. Configuration of a layered periodic foundation and its unit cell.

For the coordinate system specified, any two adjacent layers in the body comprise a unit cell, and this
unit cell is completely invariant under a lattice translation along the z-direction. Each layer is infinitely
extended in the plane. The thickness of Layer A and Layer B of a unit cell is h; and h,, respectively.
The periodicity of the foundation structure and displacement makes it possible to investigate the
frequency band gap by studying one periodic unit (Kittel 2005), or unit cell as show in Fig. 3b.

2.1 Basic Equations and Solutions

Let v,w are displacements in y and z direction, respectively. Consider an elastic wave with
propagation along z. The equation of motion in each layer is
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where u=w and C=C, =,(1+2u)/p for longitudinal wave (P wave), or u=v and

C=C, =+ u/ p for transverse wave (S wave). The coefficients 4 and x are Lamé’s elastic constant,
p is density. The index i =1, 2 indicates layers A and B, respectively. For the free vibration analysis,
a plane wave form solution to Eq. (2.1) is assumed to be

u(z,t) = ej'(k‘Zth)ui (z) (2.2)
where k is the wave number, @ the angular frequency and j the imaginary unit. Substituting Eq.(2.2)
into Eq.(2.1) yields
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The general solution of this equation is found as follows:
u;(z;) = A sin(wz; / C;)+ B, cos(wz, / C;) (2.4)
There are four unknown constants A, A,, B, and B, which are determined by boundary and
continuity conditions. For the case of transverse waves, the normal stress o, in each layer is zero
which automatically satisfies the continuous condition at the interface. The stress continuity across the
interface requires that the shear stress 7 is continuous. Therefore, the continuity of displacement and

stress at the interface z, =0 (or z, =h)) are

u,(h)=u,(0), 7,(h)=7,(0) (2.5)
Due to the periodicity of the layered structure in the z direction, according to the Block-Floquet

theorem (Kittel 2005; Xiang and Shi 2009), the displacement and stress must satisfy the following
periodic boundary conditions

ul(o)ejk'h =u,(h,), 7, (O)ejk'h =7,(h,) (2.6)
where h=h +h,. The shear stress can be expressed as
7,(z,) = uou; / 07, = pow| A cos(wz, / Cy)—B;sin(wz,/C,) |/ C, (2.7
Substituting Eqgs. (2.4) and (2.7) into Egs. (2.5) and (2.6), we have
sin(wh, /C,)) cos(wh, /C,) 0 -1 A
/ulctz COS(OJhl /Ctl) _:ulctz sin(whl /Cn) —,lecn 0 Bl -0 (2.8)
0 el —sin(wh, /C,,) —cos(oh, /C,) || A
4C,, ™" 0 —1,C cos(wh, /C,)  1,Cysin(wh, /C,,) || B,

A necessary and sufficient condition for the existence of a non-trivial solution to Eq. (2.8) is that the
determinant of the coefficient matrix is zero. After the expanding the determinant, one obtains the
dispersion relation for @ as a function of k , Which is given by

cos(k-h) = cos(ZMy cos(2ly - L ACu | ACay g @y G @l (2.9)
Cy C, 2 pC, pCy Cu C.,

Because |cos(k . h)| <1, Eq.(2.9) is satisfied only when the value of the right-hand side is between -1
and +1. The band gaps are the values of @ and k that are the solutions to Eq. (2.9) but cos(k h) falls
outside the range of -1 to 1. Following the same procedure, one can derive a similar result for the case
of longitudinal waves. If materials A and B are the same, i.e. C,, =C,, =C, and p, = p,, we get the
dispersion relation for a homogenous material as cos(k-h)=cos(wh/C,) where @ =kC, . For any

value of k, we can find a frequency w to satisfy this relation. This is the reason why there are no
band gaps in a homogenous material. In general, the dispersion equation that defines the relation
between @ and Kk is numerically solved to find values of @ and k Though the wave vector k is
unrestricted, it is only necessary to consider k limited to the first Brillouin zone (Kittel 2005), i.e.,
ke[-z/h,z/h]. In fact, if we choose a wave vector k, different from the original k in the first



Brillouin zone by a reciprocal lattice vector, for example k, =k +2nz/h where n is an integer, we

may obtain the same set of equations because of the exponential ™" =e*" in Eq.(2.8). As an
example, two common materials, concrete and rubber, are used to fabricate the periodic foundation.
The thickness of both layers are h, =h,= 0.2m. Fig. 4 presents the variations of frequencies @ for

both transverse wave and longitudinal wave as a function of the reduced wave number k in the first
Brillouin zone. The introduction of inhomogeneities implies the opening of a gap at the Brillouin zone
boundary k =—7z/h or k=7 /h. The curves are related to real wave numbers and the frequency band
gaps are related to complex wave numbers (evanescent wave), which are not calculated and don’t
appear in Fig. 4. For transverse wave, the first four band gaps are: 6.6Hz-15.0Hz, 17.8Hz-30.0Hz,
31.6Hz-45.0Hz and 46.1Hz-60Hz. For longitudinal modes, the first band gap starts from 25.0Hz to
57.2Hz and the second band gap is 67.9Hz-114.3Hz. Notice that the rubber layers used in this design
will not produce a large horizontal displacement as is the case for the rubber layers in the conventional
laminated elastomeric seismic isolator. This is so because the motion is reflected from the periodic
material. In the shake table test discussed below, the results show that the horizontal displacement at
the rubber layer is quite small.
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Figure 4. Dispersion curves

2.2 Numerical Harmonic Analysis

To show the isolation characteristic of the periodic structure, as shown in Figure 5a, an ANSYS finite
element model is built for a three-story steel frame with the layered periodic foundation consisting of
three reinforced concrete layers and two rubber layers. The system is strictly theoretical for
preliminary analyses. Denote Uy, Uy and U, as the displacement in X, y and z direction, respectively.

Firstly, a horizontal harmonic ground motion with amplitude ¢, in X direction is applied to the bottom

of the foundation. The other DOFs of the bottom are fixed, i.e., u~=0 and u,=0. Fig. 5b gives a
comparison between the transmitting Frequency Response Functions (FRFs) of the system with the
periodic foundation and without foundation. The FRF in the vertical axis defined as 20log(d, / J;)

where ¢, is the amplitude of displacement of the point A, as shown in Fig. 5a, at the top of the frame.

Note that if the input and output displacements are the same then the log will be 0. Therefore, a
negative number in FRF indicates a very effective isolation of the structure. As shown in Section 2.1,
the first two band gaps for S-wave in the periodic foundation are 6.6Hz-15.0Hz and 17.8Hz-30.0Hz. In
the band gaps, the response is significantly reduced. It is worth mentioning that the natural frequency
of the frame falls into the band. As it is well known, the excitation of a building at or near the
fundamental frequency of the building will result in resonance. Resonance of the structure will lead, in
turn, to magnification of the overall building response and likely result in serious damage. When the
excitation frequency is an integer multiple of the fundamental frequency of the building, resonance
will also occur. The multiple band gaps may be thought of as the inverse of the fundamental frequency



multiples and indicate that in a periodic structure the excitation input at the structure’s fundamental
frequency and its multiples will be blocked, avoiding resonance at both the fundamental frequency and
its integer multiples.
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Figure 5. FEM model for a frame on a layered periodic foundation, and its FRFs subjected to a ground motion

Secondly, a vertical harmonic ground motion is applied to the bottom of the periodic foundation and
the other DOFs of the bottom are fixed, i.e., u,=0 and u,=0. For P-wave, the first two band gaps in the
foundation are: 25.0Hz-57.2Hz and 67.9Hz-114.3Hz. Again, the dynamic response is also reduced
when the exciting frequency of the ground motion falls into the band gap. The results indicate that the
periodic foundation can serve as a multidimensional seismically isolated foundation. When the
periodic foundation is replaced by the previously mentioned 2D or 3D periodic foundation, vibration
attenuation can be found in a similar way.

3. EXPERIMENTAL RESULTS

As presented above, the theoretical derivation for this concept is promising. Several challenges must
be addressed in order to demonstrate the practical application of the concept. One such challenge is to
achieve a good understanding of the effect of the high heterogeneity in materials at the scale of a full
size base isolator. This is important because any heterogeneity is likely to hinder the desired
performance of the isolation system. Another issue is concerned with the effect of debonding on the
performance of the isolator. In order to begin to address these and other practical design issues and to
validate the theoretical results, a scaled model and a periodic foundation were fabricated and recently
tested using the shake table facility at the National Center for Research on Earthquake Engineering
(NCREE) in Taiwan. As shown in Figure 6, Specimen A is a steel frame fixed on the shaking table.
Specimen B is a steel frame of the same design as that of specimen A but is fixed on a 1-D layered
periodic foundation. The concrete layers and rubber layers are bonded together by polyurethane (PU)
glue for which the anti-pull strength is larger than 1MPa and the tear strength is larger than 6MPa. The
contact area of the rubber and reinforced concrete (RC) slab is 1m’. The resulting nominal anti-pulls
and tear forces of the glue between the rubber and RC slab exceed 1000kN and 6000kN, respectively.
The total mass of the test specimen with the periodic foundation is about 1.5 tons. Considering the
maximum test peak ground acceleration (PGA) value as not greater than 3g for the test scheme, which
is the acceleration limit of the shaking table, the maximum shear force across the rubber and RC base
plate is about 45kN, which is much less than the nominal tear force of the PU glue. This assures that
the PU glue prevented any loss of bond between the rubber and RC layers.
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Figure 6. Test setup for specimens A (without periodic foundation) and B (with periodic foundation)

The dynamic responses induced by background vibration, i.e., ambient and engine vibration, was
recorded. The main frequency of the background vibration is about 50Hz, which falls into the fourth
band gap of the foundation as shown in Fig.4a. The horizontal acceleration time histories of the top of
the frames are shown in Fig. 7. It is seen in Fig.7 that for the frame on a periodic foundation, the peak
acceleration is reduced significantly, compared to that of the frame without periodic foundation. The
result indicates that the periodic foundation can be used as a filter to isolate environmental vibration.

The shaking table used has six degree of freedom to simulate earthquake motion in three directions.
Because of the symmetry of the specimen, a biaxial shaking table test was performed. The 1975
Oroville seismogram obtained from the PEER Ground Database (PEER 2011) was used as the input
motion for the shaking table test. The nominal PGA is scaled to 0.418g. The main frequency of this
seismogram falls into the 2nd band gaps of the periodic foundation (17.8Hz-30.0Hz). Acceleration and
displacement responses of the specimens were recorded. The horizontal acceleration time histories of
the top of the frames are shown in Fig. 8. It is found that for the frame on a periodic foundation, the
peak horizontal acceleration is reduced by as much as 50%, compared to that of the frame without
periodic foundation.
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Figure 7. Dynamic responses induced by background vibration (ambient and engine vibration, about 50Hz)
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Figure 8. Acceleration responses of the top of the frames

As discussed previously, there are transverse and longitudinal band gaps in the foundation, so the
vertical displacements of the specimens were recorded by Linear Variable Differential Transformers
(LVDTs) to highlight that the foundation can isolate vertical vibration also. As shown in Fig. 9, the
reduction of the vertical displacement in the frame on a periodic foundation is observed. These test
results are promising and support that the periodic foundation can be served as a multi-dimensional

base isolation.
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Figure 9. Vertical displacement time history of the top of the frames

4.CONCLUSIONS

A layered periodic foundation is designed to mitigate the potential seismic damages to structures.
Different from traditional seismic base isolation, such as damping rubber bearings, lead-rubber
bearings or friction pendulum bearings, the isolating mechanism of periodic foundation is that periodic



composite can block and reflect seismic wave. The periodic foundation itself is also served as a
isolator, so an additional isolator is not required. Moreover, the periodic foundation can be served as a
multi-dimensional base isolation. By proper design, one can adjust the frequency band gap to match
with the strong frequency range of the design earthquake, so the strong component of seismic waves
will be blocked or reflected. This periodic foundation, then, can filter out the strong motion with
specific frequencies that structures may be subjected to. Or, alternatively one can adjust the frequency
band gap to match the fundamental frequency of the upper structure so that the motion transmitted
from the periodic foundation does not contain this frequency. Theory and experimental results show
that strong vibration attenuation is found when the exciting frequency falls into the band gaps.
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