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SUMMARY 
Considering the seismic response of a conventional homogeneous soil profile, a relationship is established that 
derives site natural frequency coefficient of variation from shear wave velocity coefficient of variation. Outputs 
vary dramatically depending on whether this coefficient of variation is regarded as representative of epistemic 
uncertainty or as representative of spatial variability. In the later case variability of shear wave velocity should 
be amended before it is considered as an input for computing the soil profile response. 
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1. INTRODUCTION 
 
When dealing with seismic hazard assessment for a dangerous facility site, and especially for a nuclear 
facility, it is more and more frequent that a site specific probabilistic seismic hazard assessment (site 
specific PSHA) is implemented. Except for hard rock sites, this approach generally includes a site 
response analysis. For this purpose site mechanical features are in principle derived from dedicated 
site investigations. However an issue is that these observed site features include significant 
uncertainties. This paper discusses how such uncertainties should be treated when computing the site 
response. 
 
For practical reasons, in most of the cases, the current state of the art considers only the case of 
vertically propagating shear waves. Concurrently, and consequently, description of the site mechanical 
features takes usually the simplified form of a soil profile of shear wave velocity, usually designated 
by Vs. A typical output of in-field shear wave velocity investigation is presented in figure 1 (left). It 
can be observed that Vs fluctuates rapidly with depth. For practical reasons, description of Vs is often 
limited to its mean (or median) value and standard deviation, both taking the form of slowly 
fluctuating functions of depth.  
 
On this basis, the current practice considers a series of soil profiles (practically Vs profiles) that are 
appropriately selected so that site feature uncertainties are reasonably taken into account. These soil 
profiles take also the form of slowly fluctuating functions. Such a series of Vs profiles is presented in 
figure 1 (right), derived from observed Vs values presented on the left. This selection of profiles looks 
very sensible, however we are going to make evident in this paper that it is not appropriate for the 
purpose of assessing site response uncertainty. 
 
This evidence is based on mathematical analysis of an academic case. The case consists of a soil layer, 
the Vs mean and standard deviation of which are constant with depth. We are going to examine the 
coefficient of variation of the first eignenfrequency of this soil layer as a function of the coefficient of 
variation of Vs. 
 
 
 



 
 

 
 

Figure 1. Typical in-situ record of shear wave velocity and corresponding derived soil profiles 
 
 
2. ACADEMIC CASE STUDY 
 
The academic case consists of a homogeneous soil profile lying on a rigid bed rock, excited by 
vertically propagating shear waves. The profile depth is H and the shear wave velocity is c. For the 
sake of simplicity of some calculations, we introduce also C=1/c. Under these assumptions, the wave 
propagation duration and the profile first eignenfrequency read respectively: 
 

t=H/c = HC ,  and  f=c/4H. (1) 
 
It is considered in this exercise that there is no uncertainty on H, while c is known only by its mean 
value cm and its standard deviation c. The coefficient of variation (COV) of c is denotedc (it is 
reminded that, by definition, c=c/cm.). The purpose of this paper is to derive the COV of t, t , and/or 
the COV of f, f , as functions ofc or C. 
 
There are two possible approaches for dealing with this problem: 
 
Approach A philosophy is thatc is representative of an epistemic uncertainty. In this interpretation, 
the profile is regarded as actually homogeneous; however its c value is only statistically known. 
Conceptually, in terms of random fields, we could numerically create as many as desired samples of 
constant c value profiles, the mean and standard deviation of which would be cm and c. 
 
Approach B philosophy is thatc is representative of an aleatory variability. In this interpretation, c is 
not considered as constant along the profile. The profile is regarded as a sample of a random process, 
stationary in z (z lies between 0 and H), with a mean value cm and a standard deviation c.  
 
Consequences of these two approaches are discussed hereunder. Depending on the adopted approach, 
t [f] is designated by tA or tB [fA or fB]. Depending on circumstances, calculating t might be easier 
than calculating f, or the opposite. Anyway, both t and f are equally valid and legitimate for 
characterizing the profile response. 
 
 



3. EPISTEMIC UNCERTAINTY 
 
In Approach A, calculations of profile eignenfrequency [propagation duration], mean, fmA [tmA],  and 
standard deviation, fA [tA ], are immediate, leading to: 
 

fA.= c  and  tA.= C.   (2) 
 
The above formula is obtained without any assumption on c (or C) distribution function. In order to 
establish a direct comparison between fA and tA it is possible to assume, as widely accepted, that c is 
log-normally distributed, with a c0 median value and a c dispersion, (it means that Ln(c) is normally 
distributed with a Ln(c0) mean value and a c standard deviation.). Under this assumption, it is 
possible to establish that C is also log-normally distributed with C0=1/c0 as median value and c as 
dispersion. 
 
We introduce now the non dimensional random variable e, log-normally distributed with 1 as median 
value and c as dispersion. This e random variable is so that c=c0 e and C=C0 e.  
 
The assumption of c being log-normally distributed leads then to: 
 

tA.= fA.= C = c.=e .  (3) 
 

For information of the reader, it is reminded that 1e
2
c

e   . 
 
 
4. ALEATORY VARIABILITY 
 
4.1. Description of soil profile variability 
 
Opposite to the previous section, c is now regarded as a function of z. More precisely c is a random 
process that depends on z. Consequently, C and e are also random processes. (It is not necessary to 
assume here that c, C and e are log-normally distributed. Hereunder developments are valid without 
this assumption). C and e are linked by C(z)= C0 e(z). These processes are assumed to be stationary, 
meaning that their mean and standard deviation are constant versus z. Obviously e  is equal to C. 
 
Mean and standard deviation of e(z) are denoted em and e. We consider the zero mean random 
process (z)=e(z)-em , (m=0 ; =e). By definition, its autocorrelation function reads: 
 

(z1,z2) = E[(z1) (z2)]  , where E[y] is the expectation of y.  (4) 
 
Stationarity implies that (z1,z2) does not depend separately on z1 and z2, but only on z=|z1-z2| . We 
select the classical, simple and widely used following autocorrelation function: 
 

(z1,z2) = R(z) = h
z

2
e e




 . (5) 
 
In this formula h is a correlation length of mechanical soil properties in the vertical direction. It is 
useful to consider also the non dimensional correlation length, introduced here as =h/H. Three 
samples of c/c0 profiles are presented in figure 2, corresponding to three different  values. For the 
purpose of plotting these samples c was taken as log-normally distributed with a 0.35  value 
(corresponding to c=0.36).  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Examples of c/c0 fluctuations with depth for 3 different values 

 
 
4.2. Mean and standard deviation of propagation duration 
 
Duration of shear wave propagation is now a random variable that reads:  
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In the above formula, tm is the mean value of t, while t is a zero-mean random variable. Both 
variables t and t have a common standard deviation t that reads: 
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Mathematical tools for calculation of t are presented for instance by Vanmarke (1983) and Preumont 
(1990). It is convenient to put the expectation in the form of a double integral of the autocorrelation 
function, resulting in: 
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Developing further is not possible without selecting a specific autocorrelation function. With the 
function introduced under Eqn. 4., the following formula is derived:  
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4.3. Interprétation 
 
As introduced at the beginning of this paper, the quantity of interest is the coefficient of variation 
(COV) of t, tB=t /tm, to be calculated as a function of c or C . This COV is derived from Eqn. 7. for 
tm and Eqn. 10. for t . It can be expressed in the form of a function of the non dimensional correlation 
length =h/H as follows: 
 

))1e(1(2)(Dwith,)(D /1
CtB   , (11) 

 
And additionally with C = c in case c is log-normally distributed.  
 
It can be observed that  

- D() approaches 1 as  approaches ∞. 
- D() approaches 0 as  approaches 0, and more precisely  2)(D . 

 
These D() features can be interpreted as follows: As exemplified in Fig. 2., in case h=H every sample 
of e(z) fluctuates very slowly. In case h is much larger that H every sample is practically a constant 
profile. It means that the case under consideration reaches Approach A. This is confirmed by the fact 
that tB tends to tA . 
 
On the opposite, and also as exemplified in Fig. 2., in case h is much smaller than H, every sample of 
e(z) fluctuates rapidly. This fast fluctuation creates an averaging effect resulting in the fact that 
integrations of e(z) result in numbers that are very close together. As  approaches zero, all these 
integral numbers become closer and closer, resulting in the fact that tB approaches 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. D() function 
 
This type of averaging effect was already investigated and clarified by Toubalem (1996) and by 
Toubalem et al. (1999) when analyzing soil-structure interaction phenomena taking into account 
fluctuations of soil mechanical characteristics. With this approach, Toubalem (1996) was able to elicit 
the unexpected in-situ observed azimuth-dependant variability of eigenfrequencies of an axisymetrical 
concrete building. 
 
Practically, cases with h larger than or even comparable to H do not exist. In orders of magnitude, 
typical vertical correlation lengths in sedimentary soils are decimetric to metric, while profile depths 
are decametric to hectometric. Information about vertical correlation length is provided by Antoinet 
(1995), Phoon and Kulhawy (1999) and Badaoui (2008). Consequently  lies typically between 0.001 
and 0.1, generally around 0.01, meaning that in practice D() lies between 0.1 and 0.2.  
 
 



 
5. PRACTICAL CONSEQUENCES FOR SITE SPECIFIC PSHA IMPLEMENTATION 
 
In most cases, site specific probabilistic seismic hazard assessment includes computation of the site 
response to a seismic input. In this framework, the issue of uncertainty of the site response should be 
addressed, and consequently uncertainty on the profile mechanical characteristics, principally on shear 
wave velocity. A point is then that data available from in situ reconnaissance investigations generally 
take the form of shear wave velocity records that exhibit large variability, rapidly fluctuating with 
depth. 
 
In order to cope with this uncertainty, a current practice, exemplified in Fig. 1, is to adopt the 
Approach A when deciding the range of shear wave velocity to be considered in the analysis. 
Selection of Approach A is not explicitly formulated by the person in charge of establishing soil 
profiles, which are expected to be representative of the shear wave variability. However, the fact that 
the question of the possible value of the correlation length is not even asked makes clear that this 
Approach A is implicitly adopted. 
 
Everybody understands easily that modeling a profile that realistically duplicates the rapidly 
fluctuating shear wave velocity such as resulting from soil investigations would not be reasonable, if 
even possible. On the contrary, it seems reasonable that the current practice of slowly fluctuating 
profiles is maintained. However it should be recognized that this practice introduces a bias in soil 
profile modeling, and that this bias should be corrected. 
 
For instance, in the academic case presented above, it is understandable that, for =0.01, a shear wave 
profile such as presented in Fig. 2. is not adopted and replaced by a constant velocity profile. Then the 
point is that, instead of the observed shear wave variability, represented here by c= 0.36, a reduced 
variability should be adopted, namely c= 0.36 D() = 0.05. 
 
Finally, when making decision about soil profiles to be considered in view of estimating the impact of 
soil variability on the response of the site, it should be recognized that the observed soil variability 
must be significantly reduced, by applying on it the above introduced D() factor. Typically for a 
100 m deep soil profile, the in-situ observed variability of shear wave velocity must be divided by a 
factor between 5 and 10 before it is accepted as an input data for addressing uncertainties in the 
response on this soil profile.  
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