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SUMMARY 

In order to adequately describe the behavior of materials, it is necessary to use mathematical constitutive models 

to represent their response under external loads. The constitutive models are composed of relationship between 

the stress tensor and the strain tensor. They represent an idealized description of the actual behavior. The two 

basic models frequently used are the elastic and ideally plastic models. Real materials almost never match the 

conditions defined by models mentioned before but these were mainly used because of its simplicity, which is 

essential for professional practice. In recent years, with the development of the theory of plasticity as well as the 

use of increasingly powerful computers and friendly computer programs, new elasto-plastic models have 

appeared. These models describe the non-linear characteristics of various materials such as concrete, soil, rock, 

etc. In this paper, the Drucker-Prager model with cap is used and its applicability to adobe is evaluated using the 

finite element program ADINA. A comparison of results get from numerical simulations and tests carried out at 

CISMID was done. It was found that considering Drucker-Prager failure envelope, it is possible to get an 

acceptable approximation of the stress-strain behavior in terms of initial stiffness and ultimate strength with 

differences in some cases of 10%, but the model presents a less gradual transition between the elastic and plastic 

behavior. The model does not reproduce correctly the strength degradation observed in tests. 
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1. INTRODUCTION 

 

Many old structures such as Chan-Chan (Figure 1.1) and buildings constructed in the colonial period 

(Figure 1.2) were built on adobe and / or mud with material available near the structures and local 

workers as people in charge of construction. Over the years, due to their design or function, these 

structures are considered historic and they have important cultural significance to society. 

 

  
 

Figure 1.1. Chan-Chan, The world's largest clay 

city. Trujillo, Perú 

 

Figure 1.2. Colonial houses (adobe and quincha.) 

Lima, Perú 

 

It is known that these structures have high vulnerability (Figure 1.3). In several earthquakes occurred 

around the world, these structures presented bad behavior and in some cases they collapsed quickly 



due to earthquakes of moderate magnitude (Figure 1.4) causing economic and cultural losses and also 

loss of human life. 

 

  
 

Figure 1.3. The citadel of Bam after the earthquake of 

2003 (6.2 degrees on the Richter scale) 

 

Figure 1.4. Partial collapse of adobe structures. Ica, 

1997. 

 

To reduce the vulnerability of adobe structures, it is important to understand the behavior of the 

material they are made. Adobe is a complex material that due to its differential behavior requires 

elaborated constitutive models (Blondet et al (2002)). These models are defined by idealized 

parameters that need to be adjusted or calibrated through test. This calibration is very important if we 

want to have an acceptable estimation of the results obtained by numerical simulations. The particular 

objective of the calibration is to optimize the efficiency of finite element models for the prediction of 

displacements and stress as close as possible to the real, though any model inherently has assumptions 

and approximations that make a constraint between the real and simulated behavior (Bathe (1996), 

Zienkiewiz et al (2005)). When the efficiency of the model is achieved, it can be used for other types 

of analysis with different loading histories. 

 

 

2. DRUCKER-PRAGER MODEL WITH CAP 

 

 
 

Figure 2.1. Drucker-Prager model with cap 

 

Figure 2.1 shows the Drucker-Prager model with cap (Kojic et al (2005)). It consists of a fixed line 

defined by equation (2.1) and a cap defined by equation (2.2) 

 

    1 2 0DP Df I J k  (2.1) 

  1 0Cf I X  (2.2) 

 

Where  and k are constants of material, I1 and J2D are the first invariant of stresses and the second 

invariant of deviatoric stresses. X is the location of the cap and it depends on the volumetric plastic 

strain. 



 

DiMaggio and Sandler in 1971 proposed a definition for the hardening law of the cap as follow 
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Where W and D are constants of material, eP
V is volumetric plastic strain and 

0X represents the initial 

location of the cap. 

 

 

3. COMPUTER PROGRAMS BASED ON FINIT ELEMENT METHOD 

 

The finite element method (FEM) is widely applied in engineering practice through a number of 

modern programs, giving great potential for solving problems of structural analysis. This family of 

programs can be divided into two groups: general purpose programs and specialized programs. 

 

The general purpose programs (such as ANSYS, NASTRAN, ABACUS, ADINA, PAK, DIANA) can 

be used to obtain numerical simulations similar to real behavior. The results are then subject to 

engineering judgment with empirical data of the materials, service specifications and other criteria. 

Specialized programs in the field of civil engineering (such as SAP2000, STAAD, TOWER, ETABS) 

are also used to model structures and the results can be transferred to appropriate algorithms for sizing 

and design of structural elements according to selected codes. Thus, specialized software improve the 

quantitative performance of the designer during the analysis while the general purpose software 

changes the point of view of the designer to quality terms (Zoran Bonic Todor Vacev et al (2010a, b)). 

In order to model the specimens by considering the problem of nonlinearity of the material and the 

different states of stress and strain, a general purpose program is the most logical choice. The program 

selected for this purpose was ADINA. 

 

 

4. OUTLINE OF TESTS 

 

From previous studies conducted at CISMID, it was selected some test results. The tests selected can 

be classified as follows: axial compression tests on prisms and diagonal compression test on low walls. 

Triaxial compression tests on cylindrical specimens were carried out in the geotechnical laboratory of 

CISMID for this investigation. 

 

4.1. Compression tests on adobe prisms 

 

It was selected the results of five compression tests on adobe prisms of the project developed by JICA 

and CEETyDES (2009). The purpose of these tests was to understand the behavior of adobe to axial 

loads. In Figure 4.1 it is shown one of the specimens tested. The average dimensions of the specimens 

were 37 cm side at the base and 47 cm height. Figure 4.2 shows characteristic curves obtained from 

test. It was found that the average compression strength due to the axial load is about 8.83 kgf/cm
2
. 

 

4.2. Diagonal compression tests on adobe low walls 

 

Of the same project mentioned above, it was selected the results of five diagonal compression tests on 

adobe low walls. The purpose of these tests was to understand the behavior of adobe to axial load and 

shear. The dimensions of the specimens were 100 cm side and 20 cm thick. The results show greater 

variability compared to axial compression tests. It was found that the diagonal compression strength is 

in average 0,266 kgf/cm
2
. Figure 4.3 shows one specimen and Figure 4.4 shows typical curves get 

from diagonal compression tests. 

 



  
 

Figure 4.1. Adobe specimen tested to compression 

 

Figure 4.2. Typical curve get from compression test 

on adobe prisms 

 

  
 

Figure 4.3. Adobe specimen tested to diagonal 

compression 

 

Figure 4.4. Typical curve get from diagonal 

compression test on adobe low walls 

 

4.3. Triaxial compression tests on adobe specimens 

 

The material used to manufacture the cylindrical specimens were adobe bricks remaining from tests 

presented in sections 4.1 and 4.2. The dimensions of the specimens were in average 4.85 cm diameter 

and 9.5 cm high, due to the requirements of the triaxial testing machine. It was tested two sets of 

specimens (6 specimens) with different level of confinement: 1 kgf/cm
2
, 2 kgf/cm

2
 and 4 kgf/cm

2
. 

Figure 4.5 shows the test of one specimen and Figure 4.6 shows typical curves get from triaxial 

compression test. 

 

  
 

Figure 4.5. Triaxial test of adobe 

specimen 

 

Figure 4.6. Typical curves get from triaxial compression test 

 

 

 



5. ESTIMATION OF PARAMETERS OF DRUCKER-PRAGER MODEL WITH CAP 

 

5.1. Estimation of elastic parameters (E, ) 

 

The curves obtained from compression tests on prisms were used to estimate the first parameter. 

Figure 5.1 shows the curves in terms of vertical stress and vertical strain. 
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Figure 5.1. Curves obtained from compression tests on adobe prisms 

 

The modulus of elasticity (E) was estimated based on the slope of the curves presented above using 

two ranges. The first range was set between values of 0% to 25% of maximum compression stress and 

the second range was set between values of 25% to 50% of maximum compression stress. In case of 

the first range, it was found a value of 724 kgf/cm
2
 for E, while for second range, it was found a value 

of 820 kgf/cm
2
. Based on the results presented before, a value of 800 kgf/cm

2
 was set for parameter E. 

Similar procedure was followed with experimental results from triaxial compression test. It was found 

that E increased in 15% with a confinement stress of 4 kgf/cm
2
. 

 

There is no available information from test to quantify a Poisson's ratio. A value of 0.25 was set 

because of the low variation of reference values reviewed (Yamin et al. (2003), Wang et al. (2001), 

Roonsson and Boothby (1998), Mroginski et al. (2006), Lopez et al. (2000).) 

 

5.2. Estimation of parameters that define yielding surface (, ) 

 

As can be observed in Equation (2.1), the yielding surface of Drucker-Prager is expressed in terms of 

the first invariant of stresses (I1), and the second invariant of deviatoric stresses (J2D). Based on the 

results of compression tests on prisms and triaxial compression tests on cylindrical specimens of 

adobe, the maximum values of I1 and J2D are estimated and presented in Table 5.1. sc is the stress of 

confinement of specimens. 

 

Figure 5.2 shows a graphical representation of Table 5.1. It is observed that the points fit to a line. To 

estimate the equation of the line, it was used a linear regression (Motulsky et. al. (2003)). The fitted 

line is presented in Equation (5.1) and the values of the parameters that define the yielding surface are 

 = 0.3342 y  = 2.3447 kgf/cm
2
. 

 

√(J2D) = 0.3342(I1) + 2.3447 (5.1) 

 

In Figure 5.2, it is also shown the value of the coefficient of determination, which is close to 1. This 

would indicate that failures in the specimens are given in the Drucker-Prager line. 

 

 



 
Table 5.1. Maximum values of I1 and √(J2D) get from compression tests on prisms and triaxial compression tests 

on cylindrical specimens of adobe 

Test sc I1 √(J2D) 

 
(kgf/cm

2
) (kgf/cm

2
) (kgf/cm

2
) 

Prism 1 0 7.93 4.58 

Prism 2 0 9.20 5.31 

Prism 3 0 8.94 5.16 

Prism 4 0 9.35 5.40 

Prism 5 0 8.70 5.02 

Set1-M1 1 17.98 8.65 

Set1-M2 1 20.69 10.21 

Set2-M1 2 25.41 11.21 

Set2-M2 2 25.1 11.03 

Set3-M1 4 36.4 14.09 

Set3-M2 4 36.07 13.90 
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Figure 5.2. Yielding surface of Drucker-Prager obtained from tests 

 

5.3. Estimation of parameters that define the cap (W, D, 
0
X) 

 

The values of parameters W and D can be estimated from hydrostatic test results (Desai (1984)). From 

the results presented in previous section, it is clear that the failure occurs in the yielding surface and 

the cap is not reached. Based on that, it can be said that the initial location of the cap (
0
X) must be 

larger than 36.4 kgf/cm
2
. For the numerical simulations, it was set a value of 40 kgf/cm

2
 for parameter 

0
X. 

 

From Kojic, Milos; Bathe, Klaus-Jurgen (2005), it was found that the value of W varies between 0.066 

and 0.18 while the value of parameter D varies between 0.00953 (kgf/cm
2
)

-1
 and 0.711 (kgf/cm

2
)

-1
. In 

the present study, it was considered the value of 0.18 for parameter W and the value of 0.711 

(kgf/cm
2
)

-1
 for parameter D. As it was mentioned before, the cap is not reached in the case of the tests 

presented in section 4. 
 

5.4. Estimation of tension cutoff (T) 

 

In order to model the material failure due to the effects of tension, it was set a limit (T). For the present 

study, the value of T was set to zero because adobe does not support tension stresses. 

 



 

 

6. NUMERICAL SIMULATIONS 
 

6.1. Numerical simulation of compression tests 

 

Three-dimensional solid isoparametric elements of eight nodes were used to simulate the compression 

tests. As can be observed in Figure 6.1, a quarter of the specimen was modeled. In the same figure, it is 

shown the boundary conditions and loads (vertical displacements () at top face) used in the model. 

 

6.2. Numerical simulation of triaxial compression tests 

 

In this case, two dimensional isoparametric elements of eight nodes based on displacement were used. 

The assumption of axisymmetric element was considered. Figure 13 shows a scheme of the model 

with its boundary conditions and loads applied (vertical displacement () at top and stress of 

confinement (s)). 

 

  

 

Figure 6.1. Schema of model for compression tests 

 

Figure 6.2. Schema of model for triaxial 

compression tests 
 

6.3 Numerical simulation of diagonal compression tests 

 

In this case, as in the case of the numerical simulation of compression test, it was used three-

dimensional solid isoparametric elements of eight nodes. Figure 6.3 shows the numerical model for 

diagonal compression test. In the same Figure is shown the boundary conditions and load (prescribed 

displacement) applied. 

 

 
 

Figure 6.3. Numerical model for diagonal compression tests 

 

 

 



7. ANALYSIS OF RESULTS 

 

7.1. From compression tests on prisms 

 

Figure 7.1 shows the comparison between tests and numerical simulations in terms of “vertical stress – 

vertical strain”.  It is observed that there is an acceptable agreement between test results and numerical 

simulation for the maximum strength. It is also observed a less gradual transition from elastic to plastic 

behavior in the numerical simulation. 
 

The average maximum vertical stress obtained from test is about 8.77 kgf/cm
2
 and the maximum 

vertical stress obtained from numerical simulation is 9.64 kgf/cm
2
.  The model estimates the maximum 

strength (saxial) with a relative error of 10%. Similar values are also observed in Díaz and Ríos (2005.) 

The model does not reproduce the strenght degradation observed in the tests. 

 

7.2. From triaxial compression tests 

 

Figure 7.2 shows the comparison between the tests and numerical simulation for triaxial compression 

tests considering a confinement stress of 4 kgf/cm
2
. The dashed curve is the average from the curves 

obtained from tests. As in the case of compression tests, it is observed that there is a good 

approximation of maximum strength but the model does not describe appropriately the behavior of 

material after maximum strength. 
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Figure 7.1. Comparison between tests and 

numerical simulation for compression tests on 

prisms. 

 

Figure 7.2. Comparison between tests and numerical 

simulation for triaxial compression tests (Confinement 

stress of 4 kgf/cm
2
) 

 

Table 7.1 shows the maximum strength obtained from test and numerical simulation for all triaxial 

compression tests. As can be observed, the relative error is about 10%. 

 
Table 7.1. Maximum strength obtained from tests and numerical simulation for triaxial compression tests 

Test Maximum saxial Averagesaxial saxial 
1
 Relative error 

 
(kgf/cm

2
) (kgf/cm

2
) (kgf/cm

2
) (%) 

Set1-M1 15.98 
16.53 14.77 -10.64 

Set1-M2 18.69 

Set2-M1 21.41 
19.86 19.89 0.15 

Set2-M2 21.1 

Set3-M1 28.4 
27.045 30.14 11.43 

Set3-M2 28.07 
1
 Maximum strength obtained from numerical simulation. 



 

7.3 From diagonal compression tests 
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Figure 7.3.  Comparison between tests and numerical 

simulation for diagonal compression tests 

 

Figure 7.4. Numerical simulation of history of stresses 

for diagonal compression tests. 

 

Figure 7.3 shows the results obtained from tests and numerical simulation in terms of vertical load and 

vertical displacement. It is observed that the experimental results show large variability but they tend 

to present a linear behavior. From the numerical simulation, it is observed that the low walls keep in 

the elastic range. To verify this last observation, it was traced the history of stresses in the plane √(J2D) 

– I1. From Figure 7.4, it is observed that the points remained in the elastic zone until the failure. 
 
 

CONCLUSIONS 

 

In general, all test results have variability; especially those get from diagonal compression tests. In 

axial compression test we could observe that the behavior is approximately linear until the 

maximum stress. For small deformations, it is proposed a modulus of elasticity of 800 kgf/cm
2
. 

In triaxial compression tests performed in specimens made of the same homogeneous material of the 

bricks, it wasn’t observed considerable variation in the modulus of elasticity. There is no available 

information from test to quantify a Poisson's ratio. For small deformations, it is assumed that values 

around 0.20 to 0.25 might be appropriate according to the reported by other authors. The maximum 

strengths obtained in uniaxial compression tests are in the range of 8 to 10 kgf/cm
2
. 

 

To simulate the behavior of adobe, it was used the Drucker-Prager model with cap. A procedure was 

presented to estimate the parameters of the model based on results of axial compression tests and 

triaxial compression tests with different confining pressures. It was found that the maximum stresses 

fit good to a line defined by the Drucker-Prager parameters  = 0.3342 and  = 2.3447 kgf/cm
2
. 

However, assuming a straight failure envelope, the resistance observed in diagonal compression test is 

overestimated. In no one of the tests was observed the necessity of consider a cap, even in triaxial 

compression tests with confining stress of 4 kgf/cm
2
. Note that in adobe structures are expected lower 

confining stresses. 

 

In numerical simulations performed with ADINA program, it was got an acceptable approximation of 

the stress-strain behavior in terms of initial stiffness and ultimate strength, with differences in 

some cases in the order of 10%. Numerical simulations show a less gradual transition between elastic 

and plastic behavior. This gradual transition observed in the tests may be the result of non-uniform 

distribution of stresses in the specimens. 

 



Given the limited experimental data available and the large variability observed in the results, it is 

necessary to develop a more extensive testing program. It is particularly recommended to perform 

more triaxial compression test with low confining stresses. 
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