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SUMMARY:  
The probabilistic model was not the best choice for parameters uncertainties analysis in the low seismicity area. 
When the data and information were scarcely, the convex model provided an alternative path for modeling the 
uncertainties of b value, the annual occurrence rate v and the upper bound magnitude uM in the seismic hazard 
analysis. Convex analysis method and China Probabilistic Seismic Hazard Analysis methodology are combined 
to derive the peak velocity for Ningbo city, China. The peak velocity calculated by Chinese code method is 
within the range obtained convex models except for several special cases, and the interval of peak velocity is 
most sensitive to the annual occurrence rate v .   
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1. INTRODUCTION 
 
Peak velocity is an important parameter for earthquake engineering and can be predicted by the 
seismic hazard analysis procedure. The uncertainties of geological and seismologic information lead to 
strong uncertainties in each module of seismic hazard analysis, such as the source zones, the 
seismicity parameters and the attenuation relationship. As a result, the peak velocity of a site 
calculated by seismic hazard analysis procedure is highly uncertain. The uncertainty in models and 
parameters of Probabilistic seismic hazard analysis (PSHA) was firstly investigated for seismic hazard 
assessment of nuclear power plants in middle and eastern United States by McGuire [1], and the 
aleatory and epistemic uncertainties were modeled by logic tree methodology. The normal distribution 
function was employed to model the uncertainty of the source zone by Bender [2], and the uncertainty 
effects in source zone on assessing the seismic hazard were discussed. The use of logic trees for 
ground-motion prediction equations in seismic hazard analysis was presented by Bommer et al. [3]. 
The epistemic uncertainty can also be modeled flexibly in the Monte Carlo simulations-based seismic 
hazard analysis method, and it is also applicable for seismic hazard analysis in a low to moderate 
seismicity area [4-6].  
 
Mualchin [7] remarked that current understanding of earthquake processes and limited data do not 
warrant overly complex analyses using logic tree methodology. Such analysis tends to divert attention 
away from hazard concerns and the investigation costs more in both time and money without 
necessarily improving seismic safety of structures. The use and misuse of logic trees in probabilistic 
seismic hazard analysis were also analyzed by Bommer and Scherbaum [8]. The results derived by 
Grandori et al. [9] and Klügel [10] show that the PSHA based on multiple expert opinions was 
intrinsically unreliable when the dispersion was very significant, i.e., the mean value may not coincide 
with the true value in these situations.  
 
The seismicity parameters, such as b value, the annual occurrence rate v and the upper bound 
magnitude uM , are found to be all highly uncertain and have strong effects on seismic hazard 
assessment. The uncertainties of theses seismicity parameters are modeled by the probabilistic model 



when the parameter is consistent with a certain distribution in the current process of PSHA. The 
probabilistic theory has been proven to be successful in dealing with uncertainty in engineering, and 
stochastic methods have become powerful tools, which greatly enhance the capability of engineers in 
making decisions in uncertain situations. Obviously, in a low seismicity region, which is free of the 
distinct major active faults, the earthquake record is relatively scarce and short term. Because of the 
sparsity of earthquake occurrence, the modeling of the uncertainty associated with earthquakes using 
probabilistic concept has been subjective in this situation. Alternatively, the set-theoretic, convex 
description of uncertainty is more appropriate, which does not need any information about how the 
data are distributed in its domain. The convex method of modeling uncertainty is well suited when 
only scare information is available, as in the case of seismic hazard analysis of the low seismicity 
region.  
 
In this study, the non-probabilistic convex analysis theory is firstly introduced, and the envelop bound 
convex model and the ellipsoidal bound convex model are used to deal with the uncertainties of 
b value, the annual occurrence rate v and the upper bound magnitude uM in seismic hazard analysis. 
Finally, the convex set theory and CPSHA (China Probabilistic Seismic Hazard Analysis) are 
combined to predict the peak velocity for Ningbo city. 
 
 
2. BOUND SEISMIC HAZARD ANALYSIS BASED ON CONVEX THEORY 
 
2.1. Convex analysis method 
 
In the convex analysis method, the uncertainties of variables or functions are modeled by some typical 
convex set models [11]. Among the models, the envelope bound convex model is frequently employed 
to model the uncertainties of uncorrelated variables, that is 
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where EBΩ is the convex set; )(tα is the vector of uncertain variable; )(~ tjα and )(ˆ tjα  are the lower 

and upper bounds of the thj uncertain variable, and rR is a real set. Conversely, the ellipsoidal bound 
convex model may consider the variables correlation, that is 
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where ELpΩ is the convex set; α is the radius of the convex set; u is the n dimensional vector of 

uncertain variable; cu is the nominal value of the vectoru ; W is the positive definite weighting 
matrix, and α andW describe the uncertain extent of the variable. After a simple mathematical 
manipulation [12], the ellipsoidal bound convex model described in Eqn. (2.2) can be presented as 
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where i iu rαΔ = , is the radius of the ellipsoidal Eqn.(2.3). 
 
The determination of the least favorable response (the maximum of response) and the most favorable 
response (the minimum of response) by convex analysis method is an extreme optimum problem with 
constraints. Lagrange multiplier method, Kuhn-Tucker method and sequential programming method, 
and etc., can be used to solve this problem. The process of convex analysis can be described as follows 
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where X is the vector of uncertain variable; ( )S X is the objective function, and CM is a certain 
convex model. 
 
2.2. Seismic hazard analysis methodology in China 
 
The seismic hazard analysis methodology in Chinese code for seismic safety evaluation of engineering 
sites [13], which is little different from the PSHA proposed by Cornell [14], considers inhomogeneity 
of earthquake phenomenon in time and space. 
 
The probability of being in or exceeding a particular intensity is presented as 
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where A is the earthquake intensity; a is a specific earthquake intensity; ( )f θ is the directional 

function; θ is the possible primary rupture direction; ( , )( , )
kij x yP A a M r≥ is the conditional 

probability of earthquake intensity A  being in, or exceeding, a particular intensity a when 
the thi source zone occurs a given earthquake; mN is the number of magnitude interval; sN is the 
number of seismic statistical zone; kiN is the number of source zone within the thk seismic statistical 
zone; kv is the annual occurrence rate of the thk seismic statistical zone; ln10k kbβ = ; 0M is the 
minimum magnitude used in statistical analysis; ukM is the upper bound magnitude of the thk seismic 
statistical zone; Sh( ) is hyperbolic sine function; , jki Mf is space distribution function, i.e., the 

conditional probability of being in the thi source zone, given that a certain jM earthquake occurred in 
the thk seismic statistical zone. 
 
2.3. Convex model of seismicity parameters 
 
Considering the fact that the samples of earthquake are lack in the low seismicity area, the envelope 
bound convex model as presented in Eqn.(2.6) is employed to describe the uncertainties of b value, 
the annual occurrence rate v and the upper bound magnitude uM , 
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where pb and lb are the upper and lower bounds of b value; pv and lv  are those of the annual 
occurrence rate; 

pM and lM are those of the upper bound magnitude. 
 



As for the thk seismic statistical zone, let 0
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uncertain parts of Eqn.(2.5), and then the uncertainty of peak velocity caused by b value, the annual 
occurrence rate v and the upper bound magnitude uM can be derived by the uncertainty of ( , , )ug b v M . 
As the Hessian matrix of ( , , )ug b v M , 
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is negative definite, then ( , , )ug b v M is not a convex function [15]. Solving the extreme 
of ( , , )ug b v M turns to be a nonlinear programming, i.e., searching the minimum or the maximum 
of ( , , )ug b v M when b value, the annual occurrence rate v and the upper bound magnitude uM vary in 
the envelope bound convex model by Eqn.(2.6). The programming problem is described as follows 
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The envelope bound convex model may approximately model the bound uncertainties of b value, the 
annual occurrence rate v and the upper bound magnitude uM , but the correlation of these three 
variables is ignored. 
 
To investigate the effects of correlation of these three variables on the seismic hazard assessment, the 
ellipsoidal bound convex model described in Eqn.(2.8) is employed to model the uncertainties of 
b value, the annual occurrence rate v and the upper bound magnitude uM , 
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Similar procedure as the envelope bound convex model is repeated, and ( , , )ug b v M is not a convex 
function. The programming problem are also described as 
 



( )
( )

( )
( )

( )
( )

2 2 2

2 2 2

find( , , )
max or min( ( , , ))

s.t 1
u

u

u

c c c
u u

b v M

b v M
g b v M

b b v v M M

r r r

                        
                 −

− − −
   + + ≤

 (2.10) 

 
The sequential quadratic programming method is used for the nonlinear programming problem with 
inequality constraint as described in Eqns.(2.8) and (2.10). 
 
 
3. SEISMIC HAZARD ANALYSIS OF NINGBO 
 
Ningbo city is an important port city and economical center of south China. The seismicity of this 
area is relatively low and the magnitude of earthquake is very small. In this study, the seismic 
statistical zone is categorized into twenty-five source zones [16]. The major source zones model is 
shown in Fig.3.1, and the source zones considered in this paper include Hangzhou (6.0), Zhoushan 
(6.5), Ningbo (6.0), Background 16(5.0), and Background 25 (5.0). 
 

 

 
Figure3.1. Major source zones around Ningbo city 

 



3.1. Statistical analysis f seismicity parameters 
 
The earthquake sample in Ningbo seismic statistical zone is analyzed by six cases as follows: 
（1） The direct statistical analysis of all the earthquake samples from 228 to 2008, i.e., the 

earthquake activity is analyzed from the first ground motion record, but some earthquake 
records are omitted in this period. 

（2） The direct statistical analysis of the earthquake samples from 1467 to 2008, i.e., the 
earthquake activity is considered with the complete ground motion record. 

（3） The comprehensive statistical analysis of the earthquake samples with various amplitudes 
over various periods from 228 to 2008, because the minor earthquake are neglected from 228 
to 1969 

（4） The comprehensive statistical analysis of the earthquake samples with various magnitudes 
over various period from 1467 to 2008, because the minor earthquake are neglected from 
1467 tp1969. 

（5） The calibration of seimicity parameters according to the earthquake samples from 228 to 
2008 through comparison of the calculated results with the actual annual occurrence rate. 

（6） The calibration of seimicity parameters according to the earthquake samples from 1467 to 
2008 through comparison of the calculated results with the actual annual occurrence rate. 

The statistical results of b value and the annual occurrence rate v are scheduled in Table3.1. 
 
Table3.1. Seismicity parameters statistics for different cases 

Case b v  

（1） Direct analysis of 288-2000 0.7620 0.0582 

（2）Direct analysis of 1467-2000 0.7189 0.1712 

（3）Comprehensive analysis of 288-2000 1.2481 0.5758 

（4）Comprehensive analysis of 1467-2000 0.9857 0.6020 

（5）Calibration of 288-2000 0.7620 0.1019 

（6）Calibration of 1467-2000 0.7189 0.3151 

Mean (m) 0.8659 0.3040 

Standard deviation (σ ) 0.2122 0.2374 

Upper bound（m+1.0σ ） 1.0782 0.5414 

Lower bound（m -1.0σ ） 0.6537 0.0667 

Upper bound（m+0.75σ ） 1.0251 0.4821 

Lower bound（m -0.75σ ） 0.7068 0.1260 

Upper bound（m+1.25σ ） 1.1312 0.6007 

Lower bound（m -1.25σ ） 0.6006 0.0073 

 
Variation in seismogenic information and statistical method lead to the variation of the seismicity 
parameters. Theb value is proposed to be within 0.8-1.2 by some individual researchers [17], and 



then the upper and lower bound of the envelope bound convex model are suggested as m 0.75σ± , 
m 1.0σ± and m 1.25σ± . The nominal value of the ellipsoidal bound convex model is proposed as the 
mean value, and the radius of the ellipsoidal is 0.75σ , 1.0σ and1.25σ , respectively. 
 
The upper bound magnitude uM is 7.0 according to Fig.3.1, and the perturbation interval of the upper 
bound magnitude is presented as 0.5 [18]. In order to coordinate with the bounds of b value and v , the 
lower and upper bounds of the upper bound magnitude uM is adopted as 6.7-7.3, 6.6-7.4 and 6.5-7.5. 
 
3.2. Bounds of seismic hazard analysis 
 
The attenuation relationship provided by Wang et al. [19] is adopted herein. The peak velocity 
attenuation relationship of east China is 
Major axis:  
 

log 0.013 0.793 2.212log[( 2.789exp(0.451 )]aV M R M= + − +   0.327σ =    (3.1) 
 
Minor axis:    
 

log 0.943 0.655 1.506 log[( 1.046exp(0.451 )]bV M R M= − + − +  0.327σ =  (3.2) 
 
where M is the earthquake magnitude; R is epicentral distance;σ is the standard deviation. 
 
In order to ascertain the position of seismic hazard analysis with Chinese code for seismic safety 
evaluation of engineering sites [13] in the interval of convex analysis, a reliability index is proposed as 
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where cPI is peak velocity from Chinese code, the parameters associated with the calculation 
of cPI can be obtained in Chinese code for seismic safety evaluation of engineering sites [13]; 

uPI and lPI are the upper and lower bounds of peak velocity in convex set theory; bR approaches to 
unity when cPI is near to uPI , and to zero when cPI to lPI . 
 
3.2.1. Modeling the uncertainties of the three seismicity parameters 
The uncertainties of b value, the annual occurrence rate v and the upper bound magnitude uM are 
described by the envelope bound convex model and the ellipsoidal bound convex model. The bounds 
of these parameters have been given in Table 3.2. The peak velocity of various exceedance 
probabilities and the reliability index bR are presented in Table 3.2. EB and ELP are the abbreviation 
of the envelope bound convex model and the ellipsoidal bound convex model, and LB and UB are 
that of the lower and the upper bounds, respectively. 
 
As shown in Table 3.2, the peak velocity interval of a certain exceedance probability calculated using 
the envelope bound convex model is little different from that using the ellipsoidal bound convex 
model. The uncertainties of parameters have strong effects on the lower bound of peak velocity, while 
the influence on the upper bound is relatively small. The peak velocity calculated by Chinese code 
method is within the range obtained using convex model except for several special cases, which 
usually locates the lower half interval of convex model. 
 
 



Table 3.2. Peak velocity of various exceedance probabilities with three uncertain parameters 

Method 

Peak velocity 

63% 10% 2% 

Chinese code  0.22 2.54 5.12 

Convex model LB UB bR LB UB bR LB UB bR

EB 

0.75σ  0.22 1.20 0.00 2.43 5.03 4.23 5.10 6.71 1.24 

1.0σ  0.04 1.46 12.68 1.11 5.26 34.46 3.93 6.80 41.46

1.25σ  0.01 1.80 11.73 0.04 5.45 46.21 0.70 6.87 71.64

ELP 

0.75σ  0.28 1.07 -7.59 2.70 4.86 -7.41 5.32 6.65 -15.04

1.0σ  0.04 1.22 15.25 1.39 5.06 31.34 4.56 6.73 25.81

1.25σ  0.01 1.41 15.00 0.04 5.23 48.17 0.71 6.79 72.53

 
3.2.2. Modeling the uncertainty of single seismicity parameter 
Here, only one of the three parameters is regarded as uncertainty parameter, and other two parameters 
are deterministic. That is the uncertainties of b value, the annual occurrence rate v and the upper 
bound magnitude uM are respectively modeled by the envelope bound convex model. The 
deterministic values of parameters listed in Table 3.1 (case (6)) are adopted. The lower and upper 
bounds of peak velocity with considering the uncertainty of single parameter are calculated and listed 
in Table 3.3. 
 
The upper bound and the lower bound of peak velocity are almost the same when only the 
uncertainties of the upper bound magnitude uM is considered, which is almost identical to the peak 
velocity calculated by Chinese code method. The observation above implies that the peak velocity 
interval is independent from bound of uM . In addition, the peak velocity is very sensitive to the 
uncertainty of the annual occurrence rate v and the interval of peak velocity increases when the bound 
of the annual occurrence rate v varies from 0.75σ to1.25σ . Theb value also has some impact on the 
peak velocity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3.3. Peak velocity for various exceedance probabilities with single uncertain parameter 

Method 

Peak velocity 

63% 10% 2% 

Chinese code  0.22 2.54 5.12 

EB LB UB bR LB UB bR LB UB bR

b  

0.75σ  0.13 0.24 81.8 1.90 2.65 85.3 4.74 5.19 84.4 

1.0σ  0.11 0.26 73.3 1.78 2.74 79.2 4.65 5.25 78.3 

1.25σ  0.06 0.27 76.2 1.65 2.84 74.8 4.56 5.30 75.7 

v  

0.75σ  0.40 1.14 -24.3 2.91 4.95 -18.1 5.42 6.69 -23.6 

1.0σ  0.14 1.28 7.0 1.55 5.13 27.7 4.68 6.75 21.3 

1.25σ  0.04 1.45 12.8 0.41 5.28 43.7 0.83 6.81 71.7 

uM  

0.75σ  0.12 0.23 90.9 2.52 2.55 66.7 5.10 5.13 66.7 

1.0σ  0.12 0.23 90.9 2.52 2.55 66.7 5.10 5.13 66.7 

1.25σ  0.12 0.23 90.9 2.52 2.55 66.7 5.10 5.13 66.7 

 
 
4. CONCLUSIONS 
 
This paper proposes an approach of predicting peak velocity by integrating convex set theory with 
CPSHA, which is well suited for the low seismicity region. The following conclusions can be drawn 
from this study: 
 
The peak velocity calculated by Chinese code method is within the range obtained convex models 
except for several special cases, and locates the lower half interval of convex model. The top 
contributor to uncertainty in peak velocity is the annual occurrence rate v . The interval of peak 
velocity is moderately sensitive to the b value and is not sensitive to the upper bound magnitude uM . 
The different convex models have little effect on the interval of peak velocity. 
 
As shown in this paper, the upper bound or the lower bound is far from the center of the convex set, 
and the result of convex analysis method is more conservative or adventurous. This phenomenon will 
be improved with the increase of seismic and seismogenic information in the study area, however, the 
results of seismic hazard analysis based on probabilistic model are unreliable in this situation. 
Simultaneously, it is still a top issue to be addressed about how to employ the bound results of convex 
analysis to make decisions. 
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