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SUMMARY: 

Liquefaction can cause ground subsidence, flow failure and lateral spreading among other effects. Estimation of 
the hazard of lateral spreading requires characterization of subsurface conditions. In this paper, the relation 
between liquefaction induced lateral displacements and both geotechnical and earthquake soil parameters is 
investigated. In order to assess the merits of the proposed approach, database containing 526 data points of 
liquefaction-induced lateral ground spreading case histories from eighteen different earthquakes are used from 
renowned references. This study addresses the question of whether Group method of data handling (GMDH) 
type neural networks optimized using genetic algorithms (GAs) could be used to estimate lateral displacement 
based on specified variables. At the end the results of this paper models are compared with those of a commonly 
used and the advantages of the proposed GMDH model over the conventional method are highlighted. 
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1. INTRODUCTION 

 
Liquefaction occurs in saturated sand deposit due to increase in excess pore water pressure during 
earthquake induced cyclic shear stresses. It can cause destruction or serious damage to structures. In 
order to investigate this phenomenon and mitigate its associated damages, study of liquefaction 
mechanism is significant. Liquefaction mechanism contains ground subsidence, flow failure, lateral 
spreading among other effects. Among liquefaction mechanism, lateral spreading can be more 
hazardous (Youd et al., 2002). Lateral spreading involves the movement of relatively intact soil blocks 
on a layer of liquefied soil toward a free face or incised channel. Lateral spreading can induce different 
forms of ground deformations and in the vicinity of natural and cut slopes can be very destructive. A 
number of approaches have been proposed for prediction of the magnitude of lateral ground 
displacements under different conditions. All of them can be categorized into Figure 1. 

 
 
 

 

Figure 1. Classification of the approaches of lateral spreading predictions 



However, all predictions based on any of the above-mentioned approaches require determination of 
input parameters, which are prone to uncertainties and inaccuracies. The effect of any inaccuracies of 
input data in the numerical and analytical approach may be studied by a sensitivity analysis of the 
predictions on various input data. However, due to versatility, empirical and semi-empirical 
correlations remain at the centre of practice (Albawab 2005).  

The interdependency of factors involved in such problems prevents the use of regression analysis and 
demands a more extensive and sophisticated method. The Group Method of Data Handling (GMDH) 
type neural networks optimized by Genetic Algorithms (GAs) can be used to model complex systems, 
where unknown relationships exist between variables, without having specific knowledge of 
processes. In recent years, the use of such self-organizing networks has led to successful application of 
the GMDH-type algorithm in geotechnical sciences (e.g. Ardalan et al., 2009; Kalantary et al., 2009; 
Molaabasi et al., 2012). This treatment aims to develop a GMDH-type NN for the prediction of 
Lateral Displacement, based on various soil conditions. To this end the paper first reviews previous 
efforts in predicting of lateral displacement, then a brief explanation of the case histories under 
consideration, and the phenomena of modeling with GMDH are presented. Finally the developed 
GMDH model is described and its accuracy is assessed through previous effort. 

 
2. REVIEW OF THE AVAILABLE METHODS  

 

Following the concept presented in figure 1, two basic approaches are described here; computational 
based and experimental based approaches. In the computational methods, basic parameters are input 
into analytical or numerical models to predict the extend of the effect, whereas in the latter approach 
laboratory and/or field test results are used in conjunction with case histories to develop empirical 
correlations. In recent years new identification techniques have further enhanced the latter approach by 
providing fast and efficient codes for development of empirical models. A brief review of each 
approach is provided here: 

2.1. Computational Based Methods 

 

Numerical and analytical methods have widely been used in geomechanics to simulate patterns of 
kinematic behaviour under various loadings. The success of such methods is highly dependent on the 
constitutive model or the simplified geometry used. The finite element or finite difference method are 
perhaps the most widely used numerical methods. However these procedures are highly dependent on 
material parameters that are usually difficult to estimate and as a result, limited success has been 
achieved in producing results that are comparable to field observations (Javadi et al., 2006). Numerical 
methods can also been utilized in conjunction with soft computing techniques to enhance or produce 
databases. Analytical models have also contributed to the development of knowledge in this field.  

 

2.2. Experimental Based Methods 
 

Due to complexities of the phenomenon, the aforementioned constitutive models as well as simplified 
analytical methods have failed to capture the full effect and thus empirical models based on case 
histories have remained as a popular method in the past decades. Hamada et al., 1986, Youd and 
Perkins1987, Bardet et al., 1999 and Youd et al., 2002 introduced empirical correlations and multi-
linear regression (MLR) models for the assessment of liquefaction-induced lateral spreading. Al 
Bawwab 2005 used SPSS 2004 software for statistical analysis of new sets of databases and arrived at 
a number of correlations for determination of lateral displacement. In order to enhance the accuracy of 
the models, a maximum likelihood approach was considered and the effect of data uncertainty was 
taken into account by a probabilistic methods. Kramer and Baska 2007 proposed a variation to the 
correlation presented by Youd et al. 2002; they based their model on a square root transformation of 



displacement rather than the logarithmic transformation used. On a different note, Zhang et al., 2004 
based their empirical correlation on a cumulative shear strain model; they introduced a “lateral 
displacement index (LDI)” calculated by integration of maximum shear strain over potentially 
liquefiable layers and then use it in a couple of simple correlations for “free-face” and “ground slope” 
case. Idriss and Boulanger 2008 used a different cumulative strain model to arrive at LDI. Table 1 
shows some of the empirical models found in the literature. Due to different form of prediction, Zhang 
et al., 2004, Kramer and Baska 2007 and Idriss and Boulanger 2008 models have not been included in 
this table1. The difficulties posed by the fact that the phenomenon is dependent on multiple parameters 
have partly been alleviated by soft computing techniques such as fuzzy logic, neuron computing, 
probabilistic reasoning, genetic algorithm. These methods of decision making and optimization have 
firmly established themselves as indispensable tools for modeling natural phenomena. The artificial 
neural network (ANN) has been used for modeling the seismically induced displacement based on the 
same database used in the Multi Linear Regression model developed by Bartlet and Youd 1992. In the 
light of the above mentioned techniques, a new approach is proposed here which combines the 
benefits of empirical models, neural networks with an optimization method.  

 

Table 1.  Empirical correlations for prediction of the lateral displacement 

Method Subset Model limitations 

Hamada et al. (1986) 

 

 

DH = 0.75 H1/2 θ1/3 
Number of case histories 

and variables 

Youd and Perkins 

(1987) 
Log DH = -3.49 – 1.86 Log R + 0.98 Mw 

Number of case histories 
and specific soil profile 

and topography conditions 

Bardet et al. (1999) 

free-face 
Log (DH+0.01) = -17.372 + 1.248Mw - 0.923LogR - 0.014R + 0.685LogW + 
0.3Log T15 + 4.826Log (100-F15) - 1.091D5015 

Number of case histories 
and mistakes in databases 

that correct in youd 
models. Slopping 

ground 
Log (DH+0.01) = -14.152+0.988Mw-1.049Log R-0.011R+0.318Log S 
+0.619LogT15+4.287Log (100-F15)-0.705D5015 

Youd et al. (2002) 

free-face 
Log DH = -16.713+1.532Mw-1.406Log R*-0.012R+0.592LogW +0.540LogT15 
+3.413Log (100 - F15)-0.795Log (D5015+0.1 mm) 

5 ≤ W ≤ 20% 

6 ≤ MW ≤ 8, 0.1 ≤ S ≤ 6%, 
1 ≤ T15 ≤ 15 m, gravelly 

and/or very silty 
soils,critical depth up to 

10 m 

Slopping 
ground 

Log DH = -16.213+1.532Mw-1.406Log R*-0.012R+0.338Log S+0.540LogT15  
+3.413Log (100 - F15)-0.795Log (D5015+0.1 mm) 

Kanibir (2003) 

free-face 
Log DH = -20.71+25.32Log Mw-1.39Log R*-0.009R+1.15Log W+0.19T15 0.5 -
0.02F15-0.84Log (D5015+0.1 mm) 

Uncertanity not assumed 
Slopping 
ground 

Log DH = -7.52+8.44Log Mw+0.001R*-0.23R+0.11S+0.6Log T15-0.22F15 -
0.89Log D5015 

Al Bawwab (2005) 

Model 1 
Log DH =b1·LSI+b2·ay/amax+b3·tanβ/tanφ'eqv,liq+b4·zcr+b5·Mw 

+b6·W+b7 

Probabilistic analysis 
included 

Model 2 
LogDH =b1·LSI+b2·ay/amax+b3·tanβ/tanφ'eqv,liq+b4·zcr+b5·Mw 

+b6·LogS+b7·LogW+b8 

Model 3 
LogDH=b1·LSI+b2·ay/amax+b3·tanβ/tanφ'eqv,liq+b4·Logzcr+b5·LogMw 

+b6·amax+b7·LogS+b8·LogW+b9 

Model 4 
LogDH= [(θ1LSI+θ2)ay/amax +(θ3LSI+θ4)tanβ/tanφ'eqv,liq + (θ5LSI+θ6)Log zcr 
+(θ7LSI+θ8)Log Mw +(θ9LSI+θ10)amax + (θ11LSI+θ12)LogS +(θ13LSI+θ14)Log W 
+(θ15LSI+θ16)+ �] 



3. THE PROPOSED MODEL 

 

Following the trend proposed by Al Bawwab 2005, ay/amax, tanβ/tanφ'eqv,liq, and zcr variables are used 
instead of T15, F15, and D5015 which were used in some of the earlier models. This can be considered as 
a step toward reaching to a more descriptive group of variables and consequently, a more powerful 
representative correlation. The descriptive variables are fully explained in Table 2. Where ay is the 
yield acceleration (g) equal to tan(φ'eqv,liq-β) with finite slope assumption, and φ'eqv,liq is the equivalent 
mobilized angle of internal friction of liquefied or potentially liquefiable soils. Among the descriptive 
variables, there are two topological parameters (W and S) which refer to sloping sites without a free 
face (i.e. W=0) and level sites with a free face (i.e. S=0) as in Fig 2. 

Table 2. Deprive variables for predicting the lateral displacement 

Descriptive variables of a particular soil sub-layer. 

Seismological MW Duration of shaking Moment magnitude scale of the 
earthquake  

amax Intensity of shaking Maximum Horizontal Ground 
Acceleration (g) 

Topographical W Soil profile slope Free-face ratio = H/L (%) 

S Ground conditions Ground Surface Slope (%) 

β Ground conditions Ground surface slope angle (degrees) 
= tan-1(S/100) 

Geotechnical 

 

tan'eqv,liq/tanβ Gravity force FS Against Gravitational Forces  

LSI Distribution of liquefaction potential 
through the depth 

Liquefaction Severity Index 

ay/amax  Sliding force FS Against sliding  

zc Effective potentially liquefiable depth Critical Depth 

 

 

Figure 2. Topography-related descriptive variables. 
 

 

 



With these definitions the case histories can be divided into two subsets of sloping sites without a free 
face and non-sloping sites with a steep face. In order to involve a model, a database is required. The 
database used in this paper consists of 526 case histories compiled by Youd et al.2002 including 1906 
San Francisco–USA, 1964 Prince William Sound–Alaska, 1964 Niigata–Japan, 1971 San Fernando–
USA, 1979 Imperial Valley–USA, 1983 Borah Peak–USA, 1983 Nihonkai-Chubu–Japan, 1987 
Superstition Hills–USA, 1989 Loma Prieta–USA, and 1995 Hyogoken-Nanbu–Japan and 91 case 
histories from 7 different earthquakes added by Al Bawwab 2005, including the 1976 Guatemala, 
1977 San Juan-Argentina, 1990 Luzon-Philippines, 1994 Northridge-USA, 1995 Hyogoken-Nanbu-
Japan, 1999 Kocaeli (Izmit)-Turkey, 1999 Chi Chi- Taiwan, 2003 San Simeon-USA and 2003 
Tokachi-Oki-Japan earthquakes.  

 

4. PRINCIPLES OF MODELING USING GMDH TYPE NEURAL NETWORK 

 

The GMDH algorithm is a self-organizing approach by which gradually complicated models are 
generated based on the evaluation of their performances on a set of multi-input single-output data pairs 
(xi, yi) (i=1, 2,…, m). The GMDH was first developed by Ivakhnenko 1971 as a multivariate analysis 
method for complex system modeling and identification. The main idea of GMDH is to build an 
analytical function in a feed forward network based on a quadratic node transfer function whose 
coefficients are obtained using regression technique. By means of the GMDH algorithm, a model can 
be represented as a set of neurons in which different pairs of them in each layer are connected through 
a quadratic polynomial, and thus, produce new neurons in the next layer. Such representation can be 
used in modeling to map inputs to outputs. The formal definition of the identification problem is to 
find a function f� that can be approximately used instead of the observed one, f in order to predict 
output y� for a given input vector X = 	x�, x
, x�, … , x�� as close as possible to its observed output y. 
Therefore, given M observations of multi-input, single output data pairs so that  Y� = f	x��, x�
, x��, … , x���       	i = 1,2,3, … , M�                                                                                          (1)                     

It is now possible to train a GMDH type neural network to predict the output values y��  for any given 
input vector X = 	x��, x�
, x��, … , x��� , that is  

 y�� = f�	x��, x�
, x��, … , x���       	i = 1,2,3, … , M�                                                                               (2) 

The problem is now to determine a GMDH type neural network such that the square of differences 
between the observed output and predicted one is minimized, that is   

 ∑ �f�	x��, x�
, x��, … , x�� − y��
 �!� → min                                                                                           (3) 

The general connection between input and output variables can be expressed by a complicated discrete 
form of the Volterra functional series, known as the Kolmogorov-Gabor polynomial; hence: y = a& + ∑ a�x���!� + ∑ ∑ a�(x�x(�(!���!� + ∑ ∑ ∑ a�()x�x(x)�)!��(!���!� + ⋯                                        (4) 

This full form mathematical description can be represented by a system of partial quadratic 
polynomials consisting of only two variables (neurons) in the form of: 

y� = G,x�, x(- = a& + a�x� + a
x( + a�x�x( + a.x�
 + a/x(
                                                              (5) 

By this means, the partial quadratic description is recursively used in a network of connected neurons 
to build the general mathematical relation between inputs and output given in Eq. (4). The coefficients a� in Eq. (5) are calculated using regression techniques, so that the difference between the observed 
output, y, and the calculated one, y� , for each pair of x�, y� as input variables is minimized. Apparently, 
a tree of polynomials is constructed using the quadratic form given in Eq. (5) whose coefficients are 



obtained in a least squares scheme. In this way, the coefficients of each quadratic function G� are 
derived to fit optimally the output in the whole set of input–output data pairs, that is 

E = ∑ 	12342	 ��56278   → min                                                                                                                                 	6�                                                                  

In the basic GMDH algorithm, all possibilities of two independent variables out of the total n input 
variables are taken in order to construct the regression polynomial in the form of Eq. (5) that best fits 

the dependent observations	y� , i = 1,2, … , M� in a least squares sense. Consequently, ,�
- = �	�3��
  

neurons will be built up in the first hidden layer of the feed forward network from the observations  :,y�, x�;, x�<-; 	i = 1,2, … M�> for different p, q ∈ {1,2, … , n}.  

In other words, it is now possible to construct M data triples :,y�, x�;, x�<-; 	i = 1,2, … M�> from 
observations using p. q ∈ {1,2, … , n} in the form of: 

E x�; x�< y�x
; x
< y
x ; x < y F .                                                                                                                            (7) 

Using the quadratic sub-expression in the form of Eq. (5) for each row of M data triples, the following 
matrix equation can be readily obtained as  Aa = Y                                                                                                                                               (8) a = {a&, a�, a
, a�, a., a/}                                                                                                                   (9) Y = {y�, y
, y�, … , y }H                                                                                                                   (10) 

Where; a is the vector of unknown coefficients for the quadratic polynomial in Eq. (5), and Y is the 
vector of output values from observation. It can be readily seen that:  

A = I11 x�; x�< x�;x�< x�;
 x�<
x
; x
< x
;x
< x
;
 x
<
1 x ; x < x ;x < x ;
 x <
 J                                                                                 (11)                     

The least squares technique from multiple regression analysis leads to solution of the normal 
equations,  a = 	AHA�3�AHY                                              (12) 

This determines the vector of best coefficients of Eq. (5) for the whole set of M data triples. It should 
be noted that this procedure is repeated for each neuron of the next hidden layer according to the 
connectivity topology of the network. However, such a solution directly from normal equations is 
rather susceptible to round off errors and, more importantly, to the singularity of these equations. 
There are two main concepts involved within GMDH type neural networks design, namely, the 
parametric and the structural identification problems. Nariman-Zadeh et al., 2005 present hybrid GA 
and singular value decomposition (SVD) method to optimally design such polynomial neural 
networks. The methodology and general description of this technique is beyond the scope of this 
study, and complementary information may be found in Kalantary et al., 2009. 

 

5. MODELING LATERAL DISPLACEMENT USING GMDH-TYPE NEURAL NETWORK 

 

In order to demonstrate the prediction ability of evolved GMDH-type neural networks, experimental 
data have been divided into two different sets, namely, training and testing sets. The GMDH type 



neural networks are now used for such inputs-output data to find the polynomial model of Lateral 
spread displacement in respect to its effective input parameters. The structure of the evolved 2-hidden 
layer GMDH type neural networks for free face is shown in Figure 3.a corresponding to the genome 
representations of debbggah for Lateral spread displacement in which a, b, d,g and h stand for mw, 
amax/g, w, ay/amax and tanβ/tan φ , respectively. 

 

 

Figure 3. Evolved structure of the generalized GMDH neural network for free space condition 

The structure of the evolved 2-hidden layer GMDH type neural networks for gently slope is also 
shown in Figure 3.b corresponding to the genome representations of becdbeda for Lateral spread 
displacement in which a, b, c, d, and e stand for mw, amax/g, s, w, ay/amax and LSI, respectively. The 
good behaviour of such GMDH-type neural network models also illustrated in Figure. 5 and 6.  

 

Figure 5. Neural network model predicted performance in comparison with actual data for the training set in free 
space model condition (150 input-output data) 
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Figure 6. Neural network model predicted performance in comparison with actual data for the training set in 
gently slope condition (170 input-output data) 

Some statistical measures given in Table. 3 are used in order to determine the accuracy of models.  
These statistical values are based on R
 as absolute fraction of variance, MSE as mean squared error, 
and MAD as mean absolute deviation which is defined as follows: 

 

R
 = 1 − L∑ 	M2	6NOPQ�3M2	RSTUVQ��5627W ∑ ,M2	RSTUVQ�-56278 X , MSE = ∑ 	M2	6NOPQ�3M2	RSTUVQ��5627W  , MAD = ∑ [M2	6NOPQ�3M2	RSTUVQ�[6278   (13) 

 

Table3. Model statistics and information for the group method of data handling-type neural network model for 
predicting the Lateral spread displacement  

Ground condition Subset 

Performance criteria 

R2 MSE MAD 

Free space 
Training 0.91 0.86 0.77 

Testing 0.92 0.91 0.8 

Gently sloping 
Training 0.94 0.25 0.42 

Testing 0.94  0.21  0.39 

 

The obtained polynomial model is now tested for unforeseen data during the training process which 
accordingly demonstrates the prediction ability of the model. Figure 7 shows the comparison of such 
behaviour with the actual values as a Sample for free face model. 
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Figure 5. Neural network model predicted performance in comparison with actual data for the testing set in free 
space model condition (80 input-output data) 

 

6. COMPARISON ANALYSIS 

The accuracy of the proposed model, in predicting lateral displacement, is compared with correlations 
presented previously by Hamada et al., 1987, Youd et al., 2002 and Al Bawab 2005 models (cf. Table 
1). The statistical comparison is performed for all the 526cases initially used for model development. 
Table.5 illustrates the accuracy of this study. 

 

Table5. The accuracy of different methods 

Methods R2 

Hamada et al. (1986a) 13% 

Youd et al. (2002b) 74% 

Al Bawab (2005) models 

Model 1 66% 

Model 2 71% 

Model 3 74% 

Model 4 85% 

This study Method 

 

Free Face Condition 92% 

Gently Slope Condition 94% 
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7. CONCLUSIONS 

It has been attempted in this study to deploy a system identification technique to develop the lateral 
displacement correlation over geotechnical soils properties. The evolved GMDH type neural networks 
have been used to obtain a model for the prediction of lateral displacement. Databases of case histories 
consisting of 526 databases from 18 earthquakes were compiled. A polynomial model was developed 
for lateral displacement based on geotechnical and earthquake conditions. The validation and 
performance of the new model was assessed, and contrasted with previous statistical correlations. For 
all 526 case records, including lateral displacement and geotechnical soil properties, predicted and 
measured lateral displacement values were compared. The results manifest that predictions by the 
correlations of Hamada et al. (1986a), Youd et al. (2002b) and Al Bawab (2005) models, however the 
proposed approach predicts with high accuracy and low variance. Results obtained from this study and 
previous researches reveal that empirical correlations derived from a local dataset should not 
implemented for different sites with significantly varying features. Therefore, these proposed 
relationships should be used with caution in geotechnical engineering and should be checked against 
measured lateral displacements. 
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