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SUMMARY 
A near-fault earthquake usually possesses a long-period pulse-like component that may result in an excessive 
isolator displacement in a conventional isolation system, and consequently it will increase seismic risk or lead to 
an oversized isolator design. To alleviate this problem, a variable-frequency rocking-type bearing (VFRB) is 
proposed in this study. The proposed rocking bearing has a rocking surface with a variable curvature, and by 
properly selecting the geometry of the rocking surface, the isolation stiffness and frequency of the proposed 
rocking bearing become the functions of the bearing displacement. In order to experimentally verify its 
feasibility, a full-scale steel frame isolated by prototype VFRB bearings was tested by using a shaking table test 
in this study. The rocking surface of the prototype bearings were defined by a six-order polynomial function, so 
they have a relatively higher initial stiffness followed by a softening behavior. This mechanical property enable 
the VFRB isolation system to effectively suppress the excessive isolator displacement induced by a pulse-like 
near-fault earthquake, while retains a reasonable isolation efficiency. The test data show very good agreement 
with the simulated ones. Moreover, the experimental results demonstrate that the VFRB-isolated frame exhibits 
the desired behavior in a near-fault earthquake, and thus confirms the applicability of VFRB isolators for 
near-fault seismic isolation. 
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1. INTRODUCTION 
 
Different from traditional seismic resistance techniques, the notion of seismic isolation is to implement 
a soft isolation layer under the protected structure, so the structure can be uncoupled from ground 
excitations (Naeim and Kelly 1999). A seismic structure with an isolation system is usually designed to 
be a long-period system with a fixed isolation frequency and damping ratio. This long-period feature 
inevitably induces a low-frequency resonant-like response when the isolation system is subjected to a 
ground motion containing strong long-period components. Many studies have confirmed that due to 
the long-period feature a base-isolated structure will incur excessive isolator displacement in near-fault 
earthquakes with a long-period pulse component (Jangid and Kelly 2001; Lu et al. 2002; Providakis 
2008). Consequently, this will lead to an oversized isolator design or increase the risk of isolation 
pounding effect. 
 
To avert this problem, some researchers have suggested using isolation systems with variable 
mechanical properties, so the isolation systems will not have resonant frequency and may be adaptive 
to a wider range of earthquakes with different characteristics (Nagarajaiah and Narasimhan 2006; Lu 
et al. 2011). As a part of research efforts for variable isolation systems, the objective of this study is to 
develop and test a new type of isolators called variable-frequency rocking bearings (VFRB), which 
have variable isolation stiffness and frequency that can meet the desired design specifications. In this 
paper, the theory and formulas that describe the mechanical properties of a general VFRB will be 
reviewed. Then, shaking table tests will be conducted to verify the developed VFRB theory, and the 
isolation performance of the prototype VFRB will be evaluated by using the test data. Additionally, in 



the tests, particular attention will be paid to the seismic response of the VFRB system subjected to a 
near-fault earthquake. 
 
 
2. MECHANICAL PROPERTIES OF A VARIABLE-FREQUENCY ROCKING BEARING 
(VFRB) 
 
2.1. Restoring force of the VFRB 
 
Fig. 1 shows the proposed rocking bearing installed under a structure footing. As shown in the figure, the 
rocking bearing has an articular (ball-and-socket) joint on the top and a rocking surface with a base plate 
on the lower part. The articular joint is connected to the super-structure through a mounting plate, while 
the base plate is mounted on the ground or the foundation of the structure. In an earthquake, the rocking 
surface of the bearing will rock back-and-forth on the base plate, thus the transmitted ground motion 
onto the super-structure can be mitigated. The rocking surface, which is usually axially symmetric, must 
be concaved and may have a variable curvature. 
 

 
 

Figure 1. Photo of a prototype variable-frequency rocking bearing. 
 
In this subsection, the formula describing the force-displacement relation of a general VFRB bearing 
will be given.  Fig. 2 shows the free-body-diagram of the rocking bearing. In Fig. 2, there are two 
coordinate systems: x-y and X-Y coordinates. The x-y system is a fixed coordinates, while the X-Y 
system is a moving coordinates that is attached to the bearing and will rock along with the bearing. 
Also shown in Fig. 2, the rocking bearing has two major design parameters: the bearing height h and 
the geometric function G(X) of the rocking surface. For the convenience, the function G(X) is usually 
expressed in terms of the X-Y coordinates, i.e., Y=G(X). 
 

 
 

Figure 2. Free body diagram of the rocking bearing. 
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In Fig. 2, there are four forces and one moment applying on the bearing: P is the vertical load; N is the 
normal force applied on the contact point A of the rocking surface; F is the friction force applied on 
point A; U denotes the horizontal shear force that interacts between the bearing and the super-structure; 
Mf  represents the moment caused by friction in the articular joint. Note that the shear U is equivalent 
to the horizontal seismic force transmitted to the super-structure. The shear U of the rocking bearing 
can be derived by taking the moment equilibrium equation about the contact point A.  The derived 
total shear U can be written in the following form 
 

fr uuU   (2.1) 

 
The terms ru and uf in Eqn. 2.1 represent the restoring force and the friction force components in the 
total shear U, respectively.  fu  is contributed by the friction moment fM  in the bearing, while 

ru  depends on the geometry of the bearing’s rocking surface. The detail derivation of ru  and fu   
were given in the reference (Lu et. al. 2009). While the derived fu  will be discussed later, the 
restoring force ru  can be written explicitly as 
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In the above equations, Xa is the X-coordinate of the contact point A in X-Y coordinate system (see 
Fig. 2), and )X(G denotes the first derivative of G(X) about variable X. Note that in Eqn. 
2.2, Puu rr /  represents the normalized restoring force with respect to the bearing’s vertical load P. 
Eqn. 2.2 demonstrates that the restoring force ru  of the rocking bearing is a function of Xa, G(X) 
and h, and is proportional to the vertical load P. Note that as shown in Fig. 2, Xa is not the base 
displacement of the superstructure. The base displacement (or isolator displacement) should be 
defined as the horizontal displacement of point B denoted by bx  in Fig. 2. Point B is the center of 
the articular joint. Furthermore, because the horizontal displacement of point B is equal to the 
x-coordinate of point B in the x-y coordinate system, it can be derived that 
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Investigating Eqns. 2.2 and 2.3, one should realize that it is difficult to directly express the restoring 
force ru  as an explicit function of the isolator displacement bx . However, the relationship between 

ru  and bx  does exist and can be established through the intermediate variable Xa. 
 
2.2. Restoring force of the rocking bearing 
 
As mentioned previously, the friction moment Mf  in the articular joint of the bearing causes the 
equivalent horizontal friction component fu  shown in Eqn. 2.1. At any time instant, the magnitude 
of fu will rely on the current status of the bearing motion, which has two possible motion states, i.e., 
rocking and sticking (non-rocking) states. In the rocking state, the magnitude of fu will be equal to its 
maximum value denoted by max,fu ; while in the stick state, fu  depends on the present dynamic 
response of the isolated structure and its magnitude should not exceed max,fu . Therefore, fu  can be 
expressed as 
 

max,ff uu   (for sticking state)  

max,ff uu   (for sticking state) (2.4) 

 
where 
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where and rrepresent the material friction coefficient and the radius of the articular joint, 
respectively. Eqn. 2.5 indicates that the maximum friction force max,fu  is also a function of 
Xa-coordinate. The complete derivation of Eqn. 2.5 is given in the article by Lu et. al. (2009). 
 
2.3. Tangential isolation stiffness and isolation frequency 
 
The tangential stiffness kr  (or called instantaneous stiffness) of the proposed bearing, which is 
defined as the rate of change of the restoring force, can be computed by taking the derivative of ur 
with respect to the base displacement xb, i.e., 
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In the last equation, ur defined in Eqn. 2.2 has been applied. Eqn. 2.6 implies that the isolation 
stiffness is not a constant but a function of the base displacement xb, since )(XX baa x . 
Furthermore, by using Eqn. 2.6, the tangential isolation frequency b  can be computed by the 
following equation 
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where M is the mass of the super-structure. Notably, in Eqn. 2.7 it is assumed that the superstructure 
behaves like a rigid body, and the vertical load P due to the structural weight can be expressed as 

gMP  . From Eqn. 2.7, it is evident that isolation frequency of the bearing is not a constant, but is 
an implicit function of the base displacement xb and the geometric function G(X), since ru   is a 
function of G(X) (see Eqn. 2.2). It is for this reason that the proposed bearing is called the 
variable-frequency rocking bearing. Eqn. 2.7 also demonstrates that the isolation frequency of the PRB 
is completely independent from the structural mass M. By properly selecting the geometric function 
G(X) of the rocking surface, the isolated system may possess favourable dynamic characteristics in 
different base displacement. 
 
 
3. DEFINING THE ROCKING SURFACE BY A POLYNOMIAL FUNCTION 
 
In the shaking table tests of this study, the geometric function G(X) of the prototype VFRB bearings is 
defined by the following sixth-order polynomial function 
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where c1, c2 and c3 are the three constant coefficients. The above polynomial function is an even 
function, which is symmetric about the Y-axis and passes through the origin of the X-Y coordinates. 
Since the shape of such a bearing is defined by a polynomial, the bearing is called a Polynomial 
Rocking Bearing (PRB) hereafter. Furthermore, after  XG  is substituted from Eqn. 2.8 in Eqns. 2.2 
and 2.5, both the restoring force ru  and maximum friction force max,fu  of the PRB become 
functions of three polynomial coefficients, c1, c2 and c3. The selection of these three coefficients is an 
important task in designing the PRB, since they determine the mechanical properties of the PRB. 
 
Lu et al. (2011) studied sliding isolators with variable curvature (SIVC) whose stiffness is also a 
function of the isolator displacement. Their results indicate that an SIVC with a relatively higher initial 



stiffness followed by softening mechanical behavior (decreasing stiffness) is preferable for near-fault 
seismic isolation, because it is able to effectively suppress the excessive isolator displacement induced 
by a severe long-period earthquake without significantly increasing the superstructure acceleration. To 
define the restoring force ru  as a function of the isolator displacement xb, they also suggested a 
fifth-order polynomial function with specific coefficient values for ru . Based on the function ru  
suggested by Lu et al. (2011), the values of the coefficients c1, c2 and c3 for the PRB used in the 
present study are chosen as listed in Table 1. As a result, Fig. 3 shows the normalized restoring force 
( Pur / ) and the isolation period )/2( bT   as functions of the bearing displacement xb. Fig. 3(a) 
shows that the PRB has a relatively higher initial stiffness at 0bx , but the stiffness swiftly 
decreases as bx  increases, until bx  reaches the critical displacement of 0.08m, beyond which the 
bearing stiffness increases along with bx . Moreover, Fig. 3(b) shows that the PRB has an initial 
isolation period of about 1 second at 0bx , which is shorter than the commonly used isolation 
periods, but the isolation period T is swiftly prolonged to more than 7 seconds at 08.0bx m, 
beyond which T is shortened due to the increased isolation stiffness. 
 
Table 1. Parameters of prototype PRB isolators used in the test. 

Geometric Parameter Value Material parameter Property 

Polynomial coefficient of 
rocking surface 

c1 -603.5 (1/m5) Ball socket Brass 
c2 45.14 (1/m3) Spherical head Steel 
c3 1.307 (1/m) Rocking surface Steel 

Bearing height h 0.187 m  Base plate Rubber 
Radius of ball head r 0.044 m Material friction coeff.   0.30 
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Figure 3. Mechanical properties of the prototype PRB bearings. 
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Figure 4. Mechanical properties of the prototype PRB bearings. 
 
 
4. HYSTERETIC PROPERTY TEST OF THE PROTOTYPE PRB SYSTEM  
 
In order to verify experimentally the general theory of the VFRB discussed in the previous sections, 
two types of shaking table tests were conducted: (1) a hysteretic property test of the PRB system, and 
(2) a seismic test of a PRB isolated structure. Table 1 lists all the constituent materials and parametric 
values for the prototype PRB bearings used in the tests. Figure 4 depicts the setup of the first test, 
which involved four PRB bearings mounted under the four corners of a rigid object of a total weight 



about W=10.4kN. Because the purpose of this test is simply to observe whether the hysteretic property 
of the tested PRB system follows the derived formulas, the dynamic effect of the superstructure was 
eliminated by using the rigid mass blocks as the isolated object. In the test, a sinusoidal horizontal 
excitation of frequency 1 Hz and amplitude 0.14g was imposed on the tested PRB system. The 
acceleration and displacement of the isolation system were all recorded by an accelerometer and 
displacement sensor, as shown in Fig. 4. 
 
Based on the measured data, Fig. 5 compares the experimental and theoretical hysteresis loops of the 
overall PRB isolation system. The total shear forces of both loops have been normalized with respect 
to the vertical load. Notably, the experimental shear force in Fig. 5(a) is obtained indirectly by 
multiplying the acceleration of the isolated object with its mass. On the other hand, the theoretical 
force plotted in Fig. 5(b) is simulated by using Eqns. 2.1, 2.2 and 2.4 with the parameters listed in 
Table 1. Figure 5 shows that the experimental hysteresis loop matches the theoretical one very well, 
and the prototype PRB system has the desired mechanical properties. It also indicates that the formulas 
derived in Section 2 are able to simulate the hysteretic behavior of a VFRB isolation system. In the 
next section, these formulas will be applied to simulate the seismic responses of a steel structure 
isolated by the prototype PRB system, so their application to a more realistic case can be further 
verified. 
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Figure 5. Comparison of normalized hysteresis loops for the prototype PRB system. 

 
 
5. SEISMIC TEST OF A PRB-ISOLATED STRUCTURE  
 
5.1. Test setup 
 
Figure 6 shows the setup of the second shaking table test that involves a full-scale one-story steel 
frame isolated by the prototype PRB bearings mounted under each column of the frame. While the 
properties of the bearings have been listed in Table 1, Table 2 summarizes the structural parameters of 
the steel frame. The steel frame is 3m high and has the plane dimension of 3m x 2m (length by width). 
The total mass of the frame is about 12.8 metric tons. The results of a system identification test show 
that the steel frame has a fundamental frequency (fixed base) of about 2.17 Hz and a damping ratio of 
2.1%. 
 
To investigate the isolation performance of the PRB-isolated frame in different earthquakes, two types 
of historic ground motions with very different characteristics were considered as the excitations in the 
test. Imposed on the isolated frame along its longer 3m side, the two ground motions are: (1) the El 
Centro earthquake of 1940, which is used to represent a ground excitation that is widely used in 
earthquake engineering research to represents  typical far-field earthquake in this study. (2) The 
Imperial Valley earthquake (El Centro Array 6), which was recorded by a station near a tectonic fault 
in 1979, and is used to represent a near-fault earthquake in this study. 



 
Table 2. Structural parameters of the steel frame used in the test. 

Property Value Property Value 

Material H-shaped steel  Natural frequency s  2.17 Hz  

Structural dimension 3 m 3m 2m Damping ratio s  2.1 % 

Top-floor mass sm  5.91 tons Structural stiffness sk  1099 kN/m 

Base-floor mass bm  6.91 tons Damping coefficient sc  3.38 kN-s/m 

 

 
 

Figure 6. Test setup of the PRB-isolated steel frame. 
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Figure 7. Comparison of experimental and theoretical responses of the PRB isolated frame under a harmonic 

excitation (frequency=1Hz; amplitude=1.7m/s2). 
 
 
5.2. Comparison of experimental and theoretical responses 
 
To verify the PRB theory discussed previously, Fig. 7 compares the experimental and simulated 
responses of the PRB-isolated frame under harmonic excitation, which has a frequency of 1 Hz and 
amplitude of 1.7 2m/s . In the simulated results of Fig. 7, the parametric values given in Tables 1 and 2 
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are used for the PRB and structural systems, respectively. Additionally, the axial load P of the PRB 
system is taken to be the total weight of the isolated frame and remains constant. Figs. 7(a) and 7(b) 
show that the simulated isolator displacement and structural acceleration match very well with the 
measured ones. This indicates that the theory and numerical method discussed in the previous sections 
are applicable for the analysis of the dynamic response of a PRB-isolated structural system. 
Additionally, it also confirms that the test data measured by the sensors are reliable. 
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Figure 8. Comparison of the PRB and FPS responses under the far-field earthquake (El Centro; PGA=4.6m/s2). 
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Figure 9. Comparison of the PRB and FPS responses under the near-fault earthquake (Imperial Valley; 

PGA=4.1m/s2). 
 
5.3. Comparison of isolation responses of PRB and FPS 
 
To evaluate the isolation efficiency of the PRB, in this subsection, the measured time-history 
responses of the PRB-isolated frame is compared to the simulated responses of the same frame 
isolated by conventional friction isolators, in this case FPS isolators. For a fair comparison, the 
simulated FPS-isolated frame will share the same structural parameters listed in Table 2, and also use 
the same ground excitations measured from the shaking table test. Furthermore, in the simulation, a 
typical isolation period of two seconds was adopted for the FPS system, while the friction coefficient 
of the FPS is taken to be FPS = 0.07, which is the same as the initial equivalent friction coefficient of 
the PRB (see Fig. 5). Figure 8 compares the time-history responses of the steel frame with the PRB 
and FPS systems, when both systems are subject to the El Centro earthquake (the far-field earthquake) 
with PGA=4.6 2m/s , while Fig. 9 compares the responses for the Imperial Valley earthquake (the 
near-fault earthquake) with PGA=4.1 2m/s . Figure 8 shows that in the far-field earthquake the PRB 
and FPS have roughly equal peak isolator displacements, but the PRB induces slightly higher 
superstructure acceleration. On the other hand, in the near-fault earthquake, Figure 9 demonstrates that 



the PRB effectively suppresses about 55% of the isolator displacement of the FPS, without 
significantly amplifying the acceleration response of the superstructure. 
 
 
6. CONCLUSIONS  
 
In order to alleviate the problem of excessive isolator displacement encountered in near-fault 
earthquakes, a variable isolation system composed of variable-frequency rocking bearings (VFRB) 
was experimentally studied in this work. By properly selecting the geometry of the rocking surface of 
the bearings, the isolation frequency of the VFRB bearings becomes a function of the bearing 
displacement, and is exclusively determined by the bearing geometric parameters and independent of 
the structural mass. To improve the isolation performance under near-fault earthquakes, this study 
proposed a sixth-order polynomial function to define the rocking surface of the prototype bearings 
used in the test. Two types of shaking table tests were conducted for the prototype VFRB system. The 
conclusions of the tests are summarized below. 
 
(1) In the first shaking table test, a rigid mass block isolated by the prototype bearings was tested, in 
order to obtain the hysteretic diagram of the VFRB system itself without the dynamic effect of the 
superstructure. The test results show that the experimental hysteresis loop matches fairly well with the 
theoretical one. This confirms that the derived VFRB theory is able to capture the variable hysteretic 
property of the bearing, and the VFRB is a feasible way to achieve the techniques of passive variable 
isolation. 
 
(2) By properly selecting the coefficient values of the six-order polynomial function that defines the 
bearing rocking surface, the prototype bearings have a relatively higher initial stiffness followed by a 
softening behavior. Because of this mechanical feature, the test results show that as compared to the 
response of a FPS system, the VFRB isolation system is able to effectively suppress the large isolator 
displacement induced by a strong near-fault earthquake (PGA=4.1 ), while retaining equal reduction 
rate on the super-structural acceleration. This indicates that the VFRB can be a promising technology 
for near-fault seismic isolation. 
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